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1 INTRODUCTION

Joan Robinson frequently argued that neoclassical general equilibrium
theory could not determine the rate of interest in intertemporal models (see,
for example, Robinson, 1973). There were two aspects to this critique: First,
neoclassical marginal productivity theory depended on the notion of an
aggregate capital stock. Because of aggregation problems, notably reswitch-
ing, this concept could not be defined without resorting to circular reasoning
except in the most unrealistic of models. Second, for any rate of interest there
is a different short-period equilibrium in a neoclassical model. There are not
enough equilibrium conditions to determine what this rate of interest is.

This paper focuses on the latter issue: whether the rate of interest is
determinate in the neoclassical model. It is well known that this need not be
true with overlapping generations: Kehoe and Levine (1985c) give a simple
example of an overlapping generations model that has no cycles, is not
chaotic, and has a robust continuum of Pareto-efficient equilibria that
converge to the same Pareto-efficient stationary state. If we focus on the
neoclassical case of the behavior of a production economy with a finite
number of heterogeneous, infinitely lived consumers and equilibria that
converge to a non-degenerate stationary state or cycle, however, we find that
the set of equilibria are determinate, that is, locally unique for almost all
endowments.

Our result shows that the determinacy of the rate of interest depends
critically on whether or not there are finitely or infinitely many agents. The
example in Kehoe and Levine (1985c), clearly shows that indeterminacy has
nothing to do with whether or not equilibrium prices lic in the dual of the
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commodity space. More strongly, Kehoe, Levine, Mas-Colell, and Zame
(1986) show that robust indeterminacy can arise when both the commodity
and price spaces are the same Hilbert space, provided there are infinitely
many consumers. Consequently, it is the assumption of finitely many
consumers that drives our results in this paper.

Our results extend those of Muller and Woodford (1986), who consider
production economies with both finitely and infinitely lived agents. They
show that there can be no indeterminacy if the infinitely lived agents are
sufficiently large. Their results are local, however, and concern only equili-
bria that converge to a particular stationary state. We prove a global
theorem: for a given starting capital stock, there are only finitely many
equilibria that converge to any non-degenerate stationary state. One particu-
lar implication is that when the discount factor is sufficiently close to one,
which implies that there is a global turnpike, then equilibria are determinate.

We assume that markets are complete and that the technology and
preferences are convex. Consequently, the behavior of equilibria in our
model can be characterized by the properties of a value function. This is
because the second theorem of welfare economics holds; that is, any Pareto-
efficient allocation can be decentralized as a competitive equilibrium with
transfer payments. If the preferences of consumers can be represented by
concave utility functions, then an equilibrium with transfers can be calcu-
lated by maximizing a weighted sum of the individual utility functions
subject to the feasibility constraints implied by the aggregate technology and
the initial endowments. Showing that an equilibrium exists is equivalent to
showing that there exists a vector of welfare weights such that the transfer
payments needed to decentralize the resulting Pareto-efficient allocation are
zero. This approach has been pioneered by Negishi (1960) and applied to
dynamic models in a series of papers by Bewley (1980, 1982). Using this
approach, Kehoe and Levine (1985a) have considered the regularity proper-
ties of an infinite horizon economy without production.

In general, calculating the transfers associated with a given set of weights
requires the complete caiculation of equilibrium quantities and prices. In a
dynamic model with an infinite number of commodities, this can be
awkward. To simplify the calculation, we adopt an alternative strategy based
on the simple geometric observation that any convex set in K" can be
interpreted as the cross-section of a cone in R**!. To exploit this fact, we add
a set of artificial fixed factors to the economy and include them as arguments
of the weighted social value function. These factors are chosen so that the
augmented utility and production functions are homogeneous of degree one.
Thus, .the usual problem of choosing a point on the frontier of a convex
utility possibility set is converted into a problem of choosing a point from a
cone of feasible values for utility. This extension has theoretical advantages
analogous to those that arise when a strictly concave production function is
converted into a homogeneous of degree one function by the addition of a
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fixed factor. When the technology for the firm is a cone, profits and revenues
are completely accounted for by factor payments. Analogously, making the
social value function homogeneous of degree one simplifies the accounting
necessary to keep track of the transfers associated with any given Pareto-
efficient allocation. The present value of income and expenditure for each
individual can be calculated directly from an augmented list of endowments
and from the derivatives of the augmented social value function, without
explicitly calculating the dynamic paths for prices or quantities. This is the
framework for studying multi-agent intertemporal equilibrium models de-
veloped by Kehoe and Levine (1985b).

In such a setting equilibria are equivalent to zeros of a simple finite
dimensional system of equations involving the derivatives of the social value
function and the endowments. Intuition says that since the number of
equations and the number of unknowns in this system are both equal to the
number of agents, equilibria ought to be determinate. To do the usual kind of
regularity analysis, however, we require that the system of equations that
determines the equilibria be continuously differentiable. Because these equa-
tions involve derivatives of the social value function, they are C' if the value
function is C2.

Unfortunately, the question of when the value function is C? has not been
entirely answered. Consequently, we are led to augment the system of
equations with vectors of capital sequences, and focus on equilibria that
converge to non-degenerate steady states. Using methods pioneered by
Araujo and Scheinkman (1977), we can then prove determinacy using infinite
dimensional transversality theory.

If the dimension of the stable or unstable manifold of a stationary state
changes as the welfare weights change, or if the total number of stationary
states changes, then the system bifurcates. In this case, the dynamical system
at stationary states must have unit roots, and our theorem does not apply.
Alternatively, the system may have cycles of unbounded length, in which case
we loosely refer to it as chaotic. Consequently, our results may be summar-
ized by saying that, in the class of economies that have no bifurcations and
no chaos, determinacy is generic.

These results complement those of Kehoe, Levine, and Romer (1987), who
make use directly of the differentiability of the value function. There it is
shown that if the discount factor is large, there is a global turnpike and the
value function is C2. This overlaps with the results here. On the other hand, if
the discount factor is small, the value function is also C?. This covers most
known examples of chaotic systems, as well as systems that satisfy the non-
bifurcation condition outlined above. This paper shows that with the non-
bifurcation condition, we do not need for the value function to be globally
C?, nor do we need discount factor conditions.

In the next section we present a highly aggregated neoclassical general
equilibrium model. We use this model to motivate the approach that we
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follow and to provide an overview of our results. In Section 3 we establish
some preliminary mathematical details about concave functions. Section 4
describes the economy. Section 5 defines and analyzes the savings function of
the economy. In the Appendix we prove our major results on the genericity of
regularity.

2 AN EXAMPLE

Consider a simple two-person neoclassical growth model. The preferences of
each consumer take the usual additively separable form, discounted by the
common factor §, 0<B<1. The utility function for consumer i, i= 1,2, is
L7, B'ufc,) where the momentary utility function u, is strictly concave and
monotonically increasing. The initial endowment of the single productive
factor is k% and 6, is the share of consumer . Obviously, 8, +0,=1,and 0, is
the endowment of consumer i. The technology is described by a strictly
concave, monotonically increasing aggregate production function g: R, - R.
Any profits are distributed to consumers in shares ¢, where o +to,=1

A competitive equilibrium for this model consists of a sequence p,,p,,... of
prices for the consumption good, a price r for the initial capital stock, a
consumption allocation cy,c,,... for each consumer i, a sequence of capital
stocks k¢,k,,..., a sequence of outputs of the consumption good ¢,,9,,..., and a
level of total of profits n. Given the prices p, and r, and the profits =, the
consumption allocation ¢, must solve the utility maximization problem for
consumer i

max f B'ufc,)

t=0
x
s.t.Y pe,<8rk,+on.
=0

Furthermore, given the prices p,, the production plans k,qg, must maximize
profits:

max Y pg,—rk,

=0
s.t.q,+k,, <gk), t=0,1,..

In addition, the profits n that enters into the consumers’ budget constraints
must be those actually generated by the production plans &,,q,:
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n= Zoptql - rk()'

Finally, demand must equal supply for the consumption good in every period
and for the initial capital stock:

e, tey=gq, t=01,.
k=R,

Let us assume that the functions », and f are such that at any equilibrium
the utility maximization problems of the consumers and the profit maximiza-
tion problem of the production sector have interior solutions. Assuming that
these functions are also continuously differentiable, we can characterize these
solutions using first-order conditions. For the utility maximization problem
of consumer i, these are

Bul(c,)—Ap,=0, 1=0,1,..

Ms

PCy= el’ko +or.

I

=0

Here A,>0 is the marginal utility of income of consumer i. The first-order
conditions for profit maximization are

p,—1,=0, ¢=0,1,.
—r+pg'(ky)=0
-, tpng'k)=0, =12,.

Here y,> 0 is the Lagrange multiplier associated with the constraint in period
t. These conditions can be simplified to

k=L
g'(ky) P
(k)=P=t, =12,
g'(k) s,

Let us now consider the social planning problem of determining a Pareto-
efficient consumption allocation and production sequence. Given non-
negative welfare weights (a,,a,), we maximize a weighted sum of the

individual consumers’ utilities subject to feasibility constraints:
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2 X
max ¥ @,y Bulc,)
i=| 1=0

2
s.t. Y ¢, tk, <gk) t=0,]1,.
i=]

A solution to this problem can be characterized using the first-order
conditions

afu(c,)—p,=0, i=12;t=0,1,..
=P +pq'(k)=0, t=0,1,..

g (ky)—r=0.

Here p,>0 is the Lagrange multiplier associated with the constraint on
output in every period and r is the Lagrange muitiplier associated with the
constraint on the initial capital stock. (In addition to these conditions there is
a transversality condition of the form pk,—0 as t—>.)

Notice that, if we set a,=1/A, i=1,2, then a competitive equilibrium
satisfies all of the conditions for a Pareto-efficient consumption allocation
and production sequence. (It is trivial to show that the transversality
condition must be satisfied if the profit maximization problem has a finite
solution.) This is the first theorem of welfare economics, that every competi-
tive equilibrium is Pareto efficient. Notice too that, if we set ,,=l/a, i=1,2,
then a solution to the social planning problem satisfies all of the conditions
for a competitive equilibrium except, possibly, the individual budget con-
straints. This is the second theorem of welfare economics, that every Pareto-
efficient consumption allocation and production plan can be implemented as
a competitive equilibrium with transfer payments. In this case, the transfer
payments necessary to implement the consumption allocation and produc-
tion plan associated with the welfare weights (a,,a,) are

T p(@)ca) - 0@k, — pn(@), i=1,2,..
=0

where

] 2
n(a)= Z“o p(a) ¥ cfa)~ rwk,

i=1

A competitive equilibrium corresponds to a vector of welfare weights a for
which these transfer payments are equal to zero.
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Let us develop a characterization of solutions to the social planning
problem, and of competitive equilibria, in dynamic programming terms.
Given an aggregate endowment of capital &, and a vector of non-negative
welfare weights (a,,a,), define a value function V(kya,,0,) as the maximum
of '

M

2
Zl (l‘ B'ui(cu)

1

0

subject to the constraint
Y etk sglk).
i=1

The envelope theorem allows us to treat the derivative D, Viky,a,,a,) as the
price for capital r and use it to calculate the value of the endowment 8%, for
each individual. To calculate the transfers associated with these weights, we
must also calculate the profits of the firm, if any, and the expenditure of each
individual. For profits this is straightforward: If f is not homogeneous of
degree one, introduce a fixed factor xelR and define G(k,x) = g(k/x). Specify
endowments @, of this fixed factor equal to the ownership shares of the
individuals in the aggregate firm. Then define ¥(ko,x.a,,a,) as the maximum
of the weighted objective function subject to the constraint
22 ¢, +k, ., <G(k,x). Inequilibrium the aggregate endowment of the factor
x is equal to 1, but it is useful to allow for the hypothetical possibility that it
takes on other values so that we can calculate derivatives. Formally, we can
treat x as a factor of production analogous to k and conclude that the share
of the profits for agent i is ¢, multiplied by the price D,V(k,x,a,,a,). Since
G(k,x) is homogeneous of degree one, profits net of the new factor payments
are zero. McKenzie (1959) has observed that any convex production
possibility set could be interpreted as a cross-section of a cone in precisely
this fashion and suggested that x be interpreted as an entreprencurial factor.
Alternatively, x could denote the input of inelastic labor. In this inter-
pretation each consumer is endowed with a constant amount @, of labor in
every period, and units are normalized so that the total supply of labor in
every period is one. What we have called profits is actually labor income.
Here g(k,)=G(k,1) and our construction helps us recover the ‘lost’ factor.
The next step is to show that strictly concave utility functions can also be
made homogeneous of degree one. If we interpret the fixed factor x as an
accounting device used to keep track of producer surplus — the difference
between revenue and expenditure —it is clear that a similar factor can be
used to account for consumer surplus — the difference between utility and
expenditure. Introduce an additional, person-specific fixed utility factor w,
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for each agent, and endow agent / with the entire aggregate supply of one
unit of factor i. (For simplicity, we make no distinction in the notation
between the individual’s holdings of factor w, and the aggregate endow-
ment.) Just as we do for production, define an augmented utility function
Uf(c.w)=wu c/w). In the next section, we show that this augmented utility
function can always be defined and is well behaved even when u, is
unbounded from below. Now define a value function V(ky,x,w . w,,a,.a,) as
the maximum of the weighted sum of the augmented utility functions
subject to the augmented technology.

If we let ¢, denote the optimal consumption of agent / at time ¢, the first-
order conditions from the maximization imply the equality

BlaiDl Ui(mez) = ﬁ,a/Dl Uj(cjij)‘

As a result, discounted marginal utility for either consumer can be used as a
present value price for consumption at time ¢. The only difference from the
usual representative consumer framework is that the weights a convert the
individual marginal utility prices into a social marginal value price. We can
then evaluate the expenditure of consumer i in period ¢ as ¢, multiplied by
this price. Using the properties of homogeneous functions, we can decom-
pose period ¢ utility for consumer i into the sum of a term of this form and
an analogous term involving the added utility factor:

Ule,.w)=c, D, U(c,,w)+wD,Ufc,,w).

If the term involving the utility factor is interpreted as a measure of
consumer surplus, expenditure on goods in period ¢ is simply utility minus
consumer surplus. Using the envelope theorem, we can calculate the present
value of consumer surplus for agent | as the derivative of the social value
function V(k,x,w ,w,,a) with respect to w, multiplied by the endowment w,:

w, D3V (ko x, W, wy,0,,0) = 3, B'a,w, DU (c,,,w)).
t=0

Similarly, we can calculate the discounted sum of utility for consumer 1,
measured in social value units, as the derivative of the social value function
with respect to a, muitiplied by a,:

a,D;Viky,x,w),wy,a,,a,) = Z B'a,Uc,,.w)).

1=0
Then the present value of expenditure by agent 1 is simply the difference

a, D Vikyx,w,,w,,0,,a,) — w,D; Viky,x,w,,w,,a,,0,).
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The transfer to agent 1 necessary to support this equilibrium is zero if and
only if this expenditure is equal to the time zero value of the agent’s
endowment

0,k0D\ Vikyx,w,wy0,,0,) + @, D, Vikyx,w),w,,a,,a,).

Formally, this equality can be interpreted in terms of an augmented
economy where trade in the production factor x and the utility factors w,
actually takes place. In this case, this equality can be interpreted as a
requirement that the value of the augmented endowment for agent |,
8,k,D,V+ o D,V+w D,V, equals the amount of social utility purchased,
oD V=qa,Z%,B'U,.

It is useful to define a net savings function s, for consumer 1 as

51(ke,0,0,0) =8,k D, Viko,1,1,1,0,,0,) + 9,D,V(k,,1, 1,la,,a,)
+ Dy Viky,1,1,1,a,,0,) — a, D, V(k,,1,1 Ja,a).

The savings function for consumer 2 is defined symmetrically. For a given
set of welfare weights a the transfer for each individual needed to support
the social optimum as a competitive equilibrium is the negative of the net
savings for that individual. A competitive equilibrium is therefore a vector
of weights a such that s(k,,0,0,a)=0. In general, if m is the number of
individuals, s(k,,8,9,") is a map from R® into A", and the existence of an
equilibrium can be established using a standard fixed point argument in a
finite dimensional space.

This characterization of equilibria as zeros of an equation involving
endowments and the derivatives of an augmented value function is quite
general. All that is required is that the second welfare theorem hold and
that the preferences of the consumers can be represented using concave
utility functions.

3 HOMOGENEOUS EXTENSION OF CONCAVE FUNCTIONS

In describing equilibria, we shall need the fact that it is possible to convert
any concave utility function into a homogeneous function by adding a fixed
factor. This does not follow immediately from results for production
functions because utility functions need not be bounded from below. The
analysis that follows would be considerably simpler if we restricted attention
to utility functions that are bounded, but functions like logarithmic utility
and isoelastic utility, i(c)= — c¢~® where 6> 0 are widely used in applications
of this kind of model. In the formal analysis we accommodate these functions
using the concepts and terminology from convex analysis for dealing with
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extended real valued functions; see Rockafellar (1970) for a complete
treatment.

If n_denotes the number of consumption goods in this economy, a utility
function u is a function that is defined on the non-negative orthant R% in
commodity space, and that takes on values in Ru{— co}. On the strictly
positive orthant R, u is finite, but to accommodate functions like logarith-
mic utility, we want to allow for the possibility that u(c) is equal to — oo if
one of the components of ¢ is equal to zero. We can define a topology on
Ru{— o0} by adding the open intervals [ — c0,a) to the base for the usual
topology of R. Note that (— c0,c0) is not a closed set in this topology and
that convergence to — oo has the usual interpretation: a sequence {»"} in R
converges to — oo if, for all MeR, there exists an N such that n= N implies
be[ — 0o, M). With this topology, the natural assumption on preferences is
that u: R<— RU{— o0} be continuous. For example, the utility functions
u(c)= —c~ "2 and u(c) = In(c) can both be represented as continuous functions
from R, to Ru{— o0}.

The extension of u(c) to the homogeneous function U(c,w)= wu(c/w) does
not preserve continuity on the non-negative orthant in /<*!. A discontinuity
can arise at the point (¢,w)=(0,0). This extension does, however, preserve a
weaker notion of continuity. Recall that for a function g: - R, g is upper-
semi-continuous (u.s.c.) if the inverse image g~ '([a,00)) is always a closed set.
If we allow the function g to take values in Ru{— oo} instead of R, we can
make an identical definition. Equivalently, g is u.s.c. if, for any sequence {y"}
in ' converging to y, lim,_ _ sup g()") <g(»). Since an u.s.c. function has a
maximum over a compact set, upper-semi-continuity is strong enough for
our purposes. If the function g is concave, define the recession function of g,
rg R, —Ru{— o}, as

. z+ty)—g(z
rg(y) = llml_.m g(__.it).ﬁ
where z is any point such that g(z) is finite. Since g is concave, it can be
shown that r, is homogeneous of degree one and does not depend on the
choice of z in the definition. Roughly speaking, r (y) describes the asympto-
tic average slope of g along a ray from the origin passing through the point
y.
Given these definitions, we can now state the key lemma for our

construction. See Rockafellar (1970, p.67) for a proof.

Lemma I: Let g: R, - Ru{— o} be concave and continuous. Let
G: F x R-»Ru{— w0}

be defined by .
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[ pg(y/p) ~ if p>0and yeR,,
G(y.p)= | r(y) if p=0 and yeR,
t - otherwise

Then G is concave, u.s.c., and homogeneous of degree one.

If g is a production function, hence non-negative, G(y,p) is increasing in
p. If g represents a utility function that takes on negative values, G(y,p) is
decreasing in p for some values of y. In the artificial equilibrium where we
allow for trade in the utility factors, this may imply that the price associated
with the utility factor is negative. Implicitly, the strategy here is to consider
first an equilibrium with explicit markets in all goods, including the fixed
factors in the utility functions. Prices are such that each individual
consumes his endowment (equal to one) of the utility factor. Then prices
and quantities for all other goods do not depend on whether or not trade in
the utility factors is possible. The possibility of negative prices for utility
factors in the complete markets equilibrium poses no problem for proving
existence because it is not necessary to assume free disposal of the utility
factors. As long as each individual is endowed at time zero with a positive
amount of capital or some other factor with positive value, strictly positive
consumption of all true consumption goods is feasible. The total value of
any individual’s endowment may be negative, but it is always possible to
use up the utility factor, that is, consume it, leaving strictly positive income
to be spent on the true consumption goods.

4 FORMAL EQUILIBRIUM MODEL

Assume that there are m consumers in the economy. Let n, denote the
number of reproducible capital stocks, n, the number of consumption goods.
Let k, denote the n, vector of initial aggregate capital stocks. Let ¢ denote the
m vector of ownership shares for the single aggregate firm. Each agent has
a utility function w; Fe— RU{— o}; let U R<x R+~URX{— 0} denote
the homogeneous extension of u; as defined in Lemma 1. Naturally Ufe,,1)=
u,(c“).

We assume that all consumers have the same discount factor 8>1.
Conceptually, there is no difficulty with different consumers having differ-
ent discount factors. Kehoe and Levine (1985b) show how to integrate this
into the formal model. Moreover, the proof of the existence of an
equilibrium remains straightforward. For simplicity, assume that the
technology that relates period ¢ to period ¢+ 1 can be described in terms of



532 Steady States and Indeterminacy of Equilibria

an aggregate production function. Let c,, k, and k, ., denote the aggregate
consumption at time 1, and capital at time ¢ and ¢+ 1. Then the technology
is described by the constraint f(k .k, . ,c) >0, where f: RExX e x Re— R. In
our simple example,

f(kl'kl* I'c/) =g(kl) - k’*l G

Formally, it is convenient to allow f to be defined when the terminal stock
k., lies outside the non-negative orthant. Hypothetically, if it were possible
to leave negative capital for next period, f describes the additional current
consumption that would be possible. In the intertemporal optimization
problems we explicitly impose the constraint that k,., be non-negative.

In this specification of the aggregate technology, we have not made
explicit the dependence of output on factors of production that are in fixed
supply. Formally, it is as if we have given ownership of all such factors to
the aggregate firm. Individuals sell any endowments of land and labor for
an increased ownership share in the firm. To consume a specified amount of
leisure or of consumption services from land, an individual must purchase
these like any other consumption good. This is merely a notational
convenience. To make these factors explicit, we would simply need to
augment the argument list for the production function and specify indivi-
dual endowments in these additional factors.

By Lemma 1, there exists a homogeneous function F(k,k,, ,c,x) such
that F(k.k,, c,1)= Sk k,,,c). Given the additional fixed factor x, the
aggregate technology set is a cone. Its representation in terms of an
aggregate production function is convenient because it allows a simple
specification of the smoothness properties of the technology. If Fis smooth,
the boundary of the cone is smooth. A more general treatment along the
lines of Bewley (1982) would start from assumptions about the separate
technologies available to individual firms, but our interest here lies not so
much with the specification of the technology, but rather with the specifica-
tion of preferences and endowments.

We can now specify the properties assumed for the preferences and
technology. The assumptions concerning continuity and smoothness are
standard. For convenience, the usual monotonicity assumptions are streng-
thened, but this is not essential. A more important restriction is that the
utility function be strictly concave and that the production possibility set
for output capital stocks be strictly convex when the input capital stocks
and aggregate consumption are held constant.

Assumption 1: For all i, the utility function u: Fe—Ru{— oo} is concave,
strictly increasing, and continuous. On the strictly positive orthant R, u
is C* and has a negative definition Hessian.
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Assumption 2: The production function S R x foxox Re— R is concave and
continuous, with /(0,0,0)=0). On the interior of its domain, fis C?, strictly
increasing in its first argument, and strictly decreasing in the second and third
arguments. Also the matrix of second derivatives with respect to the vector of
terminal stocks, Dy, ftk k. ), is negative definite.

In his discussion of the von Neumann facet, McKenzie (1983) has
emphasized that it is restrictive to assume that fis strictly concave. If fixed
factors in production can be allocated between different constant returns to

consumption and next period capital can be exchanged one for one, the
weaker assumption that D, flk.k,. ) is negative definite requires that,
given k, the set of possible output combinations have a production
possibility frontier with positive curvature.

If we define Slkk,, c) as gk)—k,,.,—c, in our simple example, then
Dy, ftk k,, ,c)=0. Suppose instead we set

f(k,vku- |,C,) = h(g(k:)) - h(kl# ] + CZ)

Assumption 3: ( Boundedness) There exists ke €R%and a bound b< 1 such
that £, >k_,_and k., > bk, implies that k.., is not feasible.

This assumption states that capital stocks larger than ke Cannot be
sustained. By the definition of F, this bound also holds when f(k .k, , .c) is
replaced by its homogeneous extension Flk,.k,, cx) for any value of x less
than or equal to one. This boundedness assumption is stronger than is
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that there exist strictly positive feasible paths for capital and consumption,
and that at least one such path does not converge asymptotically to zero
consumption and capital. Recall that F¥, denotes the strictly positive
orthant in R* and that <1 is the discount factor.

Assumption 4: (Feasibility) For all keR*, there exists k,..€R%, and ceR,
such that (k,.k,, ,c) is feasible, that is, Sk k, . ,c)=0. Furthermore, for some
point keR% , k,,, and ¢ can be chosen so that ce"<, and Bk, >k,

The smoothness arguments that follow require that the optimal values of
the capital stock and consumption lie in the interior of the domain of the
production function and the consumption function respectively. This is
guaranteed here by infinite steepness conditions on the boundary of the
domains. For a concave function g F—PRu{- w0}, the generalization of a
derivative is a subgradient. The set of subgradients of g at y, denoted og(y), is
defined by

%8(»)={peF: g(2) ~g(y)<p(z—y) for all zeR}.

Note that we follow the unfortunate, but well-established, convention of
letting a term like subgradient have a different meaning for concave and
convex functions. For a convex function h(z), the definition of Oh(z) is given
by reversing the direction in the inequality in the definition given here. Let
{y"} be a sequence in R, +- Suppose g is a differentiable function with the
property that one of the components of the gradient dg(y") has a limit equal
to oo as y” approaches a point y. Then 0g(y) is empty. By the assumption of
concavity, a point like y can arise only on the boundary of the domain of g
For a function like g(y,,y,) = Y143, the limit of the gradient as (¥},)3) goes
to (0,0) cannot be defined, but it is still the case that 9g(0,0) is empty.

Assumption 5: (Infinite steepness on the boundary)

(@) If ¢ is an element of the boundary of the domain of u, the set of
subgradients du(c) is empty.

(b) Ifanycomponent of k,is 0, the set of subgradients of Jf with respect to its
first argument, 9, Sk k, . \,c), is empty.

Part (a) implies that the marginal utility of any good is infinite starting
from zero consumption of that good. As stated, it allows u to be finite or to
equal — oo on the boundary. It implies that every individual consumes some
amount of every good in equilibrium, but weaker conditions could be used.
All that is necessary is that a strictly positive amount of each good be

produced in equilibrium. Part (b) is the usual assumption of infinite marginal
productivity of each capital good starting from zero usage.
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5 SOCIAL RETURN AND SAVINGS FUNCTIONS

We now define the return and savings functions derived from the social
planning problem. These are then used to define an equilibrium. Given the
underlying preferences and technology, we define a weighted momentary
social return function v: Rex B x R, x R x R" - RU{ - o} as follows: If
Fk k. ,,0.x)>0, that is, if non-negative aggregate consumption is feasible,

T
kK, X wa)=max Y a, Uf(c,w)
i=1

s.t. F<k,,k,+,, Y c,,,x> >0
i=|

¢, 20.
If Flk k., ,0,x)<0,
vik,k, , xwa)=—o.

If we were to work only with utility functions that are bounded from below
on a suitably chosen domain, v would be a familiar, real valued saddle
function. It is concave and homogeneous of degree one in (kok,, ,x,w),
convex and homogeneous of degree one in a. It would also be continuous in
the usual sense, instead of u.s.c. as established below. The following
proposition, characterizing v, is proven in Kehoe, Levine, and Romer (1987).

Proposition ]: Under Assumptions -5, the following results hold:

(a) v is well defined.

(b) ForaeRr™, v(,;",',,@) is concave, u.s.C., and homogeneous of degree one,
with the same monotonicity properties as F.

(c) For any (kk, . x,w)e R x [ x R, x R7, the function vk k., xw,):
R . - RU{- o} is convex and homogeneous of degree one.

(d) For any (x,w,a)eR, x R? x R, the set of subgradients of the concave
function v(*, x,w,a) is empty at every point on the boundary of its
domain.

(¢) On the interior of its domain, v is C2.

(f) Evaluated at any point in the interior of the domain of v,
Dk, k,. ,x,a) is negative definite.

Next, we consider the optimization. problem
v < (D
max 3 Bvk,k,. .x,w,a).

=0
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Here, the maximization is over all non-negative sequences {k,} having an
initial value equal to ko The constraint that the sequence be feasible is
implicit in the maximization problem since v must take on the value - oo at
some point along an infeasible sequence. Let #7% denote the Banach space of
bounded sequences in & under the sup norm, |k| =sup, |k, where |k
denotes any norm equivalent to the usual norm on F; let (¢"). denote the
positive orthant in £7%. For convenience, assume that the first component of
any sequence in /% has an index ¢+ = 1. Define the mapping associated with the
Euler equation, (W), . x R, x R . —¢™, by the rule

S(k.ko.a), = D,v(k, vk, 1,1a)+BD, wkok,. 1L1a), 1>1.

By the usual sufficient conditions for concave maximization problems, any
path k, that remains bounded and satisfies the Euler equation E(k,k,0)=0
1s an optimal path. Conversely, any optimal path & starting at an interior
point ke, satisfies this equation and remains bounded. Consequently,
ke(£7¥), is optimal if and only if &(k,k,,a)=0.

To define the savings functions we need to specify the matrices of
individual endowments. Let 8 denote the n, x m matrix of non-negative
capital shares. Naturally Z,6,=1. Let k, denote the n % n, diagonal
matrix of capital stock corresponding to an n, vector ko, and let A denote
the m x m diagonal matrix of welfare weights corresponding to an m vector

supplies k,, are strictly positive, if every individual is endowed with a
positive amount of some capital good, and if the shares sum to one. If we let
87 denote the transpose of 8 and interpret all the following products as
matrix products, we can define the savings function for any admissible
ko.0,¢ and aeR7 as follows:

O(k,k0,@,0,9) = 07k, D\ vk, k1, 1,0) + ® Y B'Dwk,k,, ,1,1,0)
=0

+ 3 BDMk k.. 1.1.0)~ A Y BDkk,,,1,1,0).
=0 =0

Notice that, in defining the savings function, we have set x=1and w,=1 for
i=1,..m. At these values the augmented functions Ufc,,w) and
Fk,k,, .c.x) reduce to the original specifications u;and /. The next proposi-
tion establishes the basic properties of o, and of the optimal stationary
capital stock k=,

Proposition 2: Let keR*, let x€R,, and let aeR". Under Assumptions 1-5
the following results hold:
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(a) The maximization problem (1) has a unique solution.

(b) There exists an optimal stationary valye k% = k*(a); that is, the sequence
defined by &, = k* solves the problem (1) beginning at k*; every optimal
stationary value lies strictly in the interior.

(c) The pair (&,0)is C,

(d) The pair (&.0)is homogeneous of degree one in q.

(e) Zr, o (k.ky,0,8,0)=0.

See the Appendix for the proof. Kehoe, Levine, and Romer (1987) prove
the following resuit.

Proposition 3: For givenk,, 8, and ©,kand o are an equilibrium if and only if
E(k.kya)=0
c(k,ko,a,e,(p) =0.

Moreover, an equilibrium exists for any kg, 8, and ¢ that are admissible,

Because (£,0) is homogeneous and I, 0,=0, we should delete one
variable and one €quation from our equilibrium system. Fix a,=1. For
notational simplicity we assume hereafter that a=(a,,a,,...,a,_,). We shall
also assume hereafter that o consists of G, to o,_, only. Our procedure is
analogous to that used with systems of excess demand functions where
homogeneity of degree zero is used to impose a numeraire and Walras’s Law
is used to drop an equation.

We now define a non-degenerate steady state and prove that, for generic
initial conditions, there are only finitely many equilibria converging to non-
degenerate steady states. Define DE=[Dgt DE]. Let Dyv, denote
Dv(k,k,, ,a). Then we can write the component ¢ of D,E(k .k, a)h as

BDI:"/’:H +(BD|1":+ Dzzvl—l)hl+Dzlvl—lhl-l'

In other words, D,Eh=( gives rise to a linear dynamical system. At a
stationary state, the coefficients are time independent, so we omit the time
subscript. For emphasis we write D,E* to emphasize we are considering a
stationary state. By the roots of D,E* we mean the eigenvalues of the
associated linear dynamical system. We call a stationary state non-degenerate
if D,&* has no roots on the unit circle and if D,,v is non-singular.

That D,,v is non-singular ensures that the dynamical system can be solved
both forwards and backwards since Dy, is the transpose of D,,v. In
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consumption goods. The dynamical system associated with the social plan-
ning problem for this economy always maps k,., onto a line in /. One can
also show directly that D vk, k, . ,a) is everywhere singular in this case. This
kind of collapse in the dimensionality of the model is prevented, even locally,
by assuming that D,,v is non-singular.

At a non-degenerate steady state, it is well known that % can be written
as the direct sum of a stable and unstable manifold. We refer to n, minus the
dimension of the stable manifold as the index of D\&”. In Lemma 3 below we
show that D&% is one to one. It follows directly that the index is non-
negative. We call a path k non-degenerate for and k, if k, converges to a
non-degenerate stationary state k*(a) and if, whenever index k=(a)>1,
Dk k,, a) is non-singular for r=0,1,... .

Note that these definitions may casily be extended to allow cycles in place
of stationary states. Consider a cycle with period p. We redefine periods with

prove the following result:

Proposition 4: For fixed ¢ and a full measure subset of k, and 0 there are
finitely many equilibria in E(k,).

Notice incidentally, that by Fubini’s Theorem, the fact that Proposition 4
holds for fixed ¢ and a full measure subset of k, and 6 implies that it holds for
a full measure subset of k,, 6, and ¢.

We can now define an equilibrium to be regular if the operator

D& D¢
Do Dgo

is non-singular. Since the inverse function theorem and implicit function



(k, @) is not compact. We do not know, therefore, that the number of
equilibria is necessarily finite.

Our preliminary goal is to study the circumstances under which £ is non.-
singular,

Lemma 2: D\ is one to one.

Proof: Araujo and Scheinkman (1 977) provide a proof under the assumption
that v(-,-a) is strictly concave, but this js stronger than js necessary.,
Proposition 2 demonstrates the uniqueness of solutions for this model and
this is all that is required for their argument.

non-singular.
Lemma 3: If ¥ is onto, then it is non-singular.
Proof: We must show X is one to one. Let
K={h,eR"""| there exists h&£% such that D&, +DEn =0y

Since D& is one to one by Lemma 2, there IS a unique linear operator B:
K—¢7% such that DEBh,+Dth =0 Notice that, since B has finite dimen-
sional domain, it js a continuous operator.

Suppose heker x. Then hex and hy=Bh,, which implies that
(D,6B+ D,6)h,=). On the other hand, D,c8 + Dya is onto. Let YV.&lR* " and
let Oe/" with y=(0,y,). Since ¥, is onto, let % be a solution of & h=y. Then
hex and %, = BR,. This implies that (D,6B+ Do)k, = Ya» Which implies that
D6B+ Do is onto. Finally, since D68+ Dya is a finite dimensional square
matrix, it is also one to one. We conclude that if heker I, since
(DioB+ Dic)h, =0, then h,=0. Since h.= Bh,, we find that h=0,
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equilibria. Since the manifold deforms smoothly with respect to small
perturbations, they change neither the fact that X is regular, nor the
dimension of the kernal. The indeterminacy is robust. For a more detailed
discussion of this point, the reader is referred to Kehoe, Levine, Mas-Colell,
and Zame (1986).

Lemma 4: At a non-degenerate steady state D,£* is onto and dim
ker D,£¥=n, —index D,E*.

Proof: That dim ker D,£* = n, — index D,&* means that dim ker D,£* has the
same dimension as the stable manifold: since multiple solutions to D,£%h=0
are indexed by pairs (4,,4,) on the stable manifold, this follows. That D,£* is
onto follows from the fact that the stable manifold is robust at a non-
degenerate stationary state with respect to small non-stationary perturba-
tions; see the proof of the local stable manifold theorem in Irwin (1980).
Consequently, D,E%h=b has non-empty stable manifold for small enough b,
and since it is linear, for all 4. In particular, D,£*h=b has at least one
solution.

QED

The next task is to show that, if k converges to a non-degenerate stationary
state, then D,&(k.k,.a) is onto.

Proposition 5: If k is a non-degenerate path for a and k,, then D,E(k.k,,a) is
onto and has index equal to that at k4(a).

Proof: First we show that D\§ is onto. Araujo and Scheinkman (1977) give a
proof for the case where index DE*=0. We examine only the case where
index DE*>1. Let F: /"—¢" be defined by the rule Fk=(k,k,,...). Since
k,~k*“(a) and small perturbations of D,E* are also onto, for some finite T,
D\&(F"k,k,a)F"h= F"b. Then, since D,,v, is by assumption non-singular, we
simply solve recursively backwards to find

h_,=—Dy'v,_ [(BD,v,+ Dyyv,_)h,+ BD A, —~b).

Since only a finite number of steps are involved, he/™.

The fact that D,§ and D,* have the same index follows from the fact
[shown, for example, in Araujo and Scheinkman (1977)] that they differ by a
compact operator, and the fact that the index of a Fredholm operation is
invariant under the addition of a compact operator. ' .

QED

Let E(k,) denote the set of pairs (k,a)e(¢™), x R*~! such that k is non-
degenerate for @ and k, and is of index i. Recall now that 0<i<n, We are
interested in E(k,) = U™, E(k,).
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Proposition 6: For any fixed ¢ and a full measure subset of k, and 8 every
equilibrium in E(k,) is regular.

Proof: In steps 1-4 we consider a fixed index i and E(k,).
Step 1

We must find an open domain for £ in order to do calculus. If (k,a)eE(k,),
then there is an open neighborhood Efk,) of (k,k,a) such that if
(k' Jy,0')eE(k,) and E(K’ kj,a’) =0, then (k',a')eE (k;); in other words, locally
paths either converge to a non-degenerate stationary state, or leave; they do
not remain bounded nearby without converging. This is shown in the proof
of the robustness of the stable manifold; see, for example, Irwin (1980). We
may also assume that, in E(k,), D,E(k",k;,a’) is onto and has kernal of
dimension n, — i. This follows from the facts that the set of operators of this
type is an open set (see Abraham and Robbin, 1967) and that D,§ is a
continuous function of its arguments by Proposition 2. Finally, let
E,— v, Efk,). This open set we take to be the domain of &.

Step 2

Consider the matrix function on E, x Rm-Y

k__ ky e 0

- 7

D§ D D\g 0 l
- |

Do Dy, D,o DpJ

In Kehoe, Levine, and Romer (1987) it is shown that D,o is onto; and by
construction [D,g D,E]= D,£ is into. It follows that p is onto. Moreover, since
D,o is non-singular, and [D§ D,E] is onto with an n, — i dimensional kernal,
it is clear that dim kery=n,—i+m— 1. The implicit function then implies
that the set of (k,k,,a,0) such that (a,k) is an equilibrium is an n, —¢+m—1
dimensional C' manifold.

Step 3

To apply the parametric transversality theorem in step 4 below, we must
show that the equilibrium manifold is second countable; that is, that every
open covering has a countable subcovering. Since /7 is not separable, it is
not itself second countable. It is clearly sufficient, however, that the set of
(k,ky,) in E, with E(k,k,,a)=0 is second countable. By construction such k
converge to a non-degenerate stationary state, and such convergence must be
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exponential, so it suffices to show that the space of convergent sequences
converging at the rate 1/¢ is second countable. This is the product of the
second countable space /", containing the limits, and the space of sequences
converging to zero at the rate 1/t. The latter space of sequences is second
countable because it is the union of sequences dominated by N/t as N— oo,
and each of these spaces is compact. Finally, we observe that the product of
second countable spaces is second countable.

Step 4

This step is identical to the finite dimensional proof of the parametric
transversality theorem. See, for example, Abraham and Robbin (1967).
Consider the projection T(k.k,,a,0)=(k,,0) restricted to the equilibrium
manifold. This is a C' map between second countable n,—i+(m—1) and
n,+(m—1) dimensional C' manifolds; moreover, the point (k,k;a,0) is a
regular equilibrium if and only if it is a regular value of I1. By Sard’s
Theorem, however, the set of regular values (k,,8) are of full measure. This
shows regular equilibria are full measure for each i.

Step 5

Since the countable union of measure zero sets has measure zero, the
intersection of the full measure sets for each / has full measure.
QED

Observe that in step 4 the map to which Sard’s Theorem applies is from an
n,—i+m—1 dimensional manifold to an an,+m—1 dimensional one. It
follows directly that if i 1 then the equilibria in E(k,) are regular by virtue
of not existing at all. Moreover, as we have remarked above, Araujo and
Scheinkman show that D, is onto at a steady state with index 0. Conse-
quently, under the hypothesis of Proposition 4, we may assume that there are
finitely many equilibria, and that every equilibrium has D,§ non-singular.

APPENDIX

Proof of Proposition 2: See Kehoe, Levine, and Romer (1987) for the proof of
parts (a), (b), (d), and (¢).

To show part (c) consider any function y,=w(k,k,,,,a) where w is C'.
Since (k .k, . ,,a) may be restricted to a compact domain, the operator defined
by :

(DW(k,O.)h),= Dlw(knkH. |)9a)h1 + Dzw(knkn- lva)hn- ] + Dlw(kt’kl+ I9a)hu
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is bounded and therefore continuous. Moreover, if |k—k’|,la—a'|<¢ and
|l <1, then

sup |[Dy(k,a) — Dy(k’,a")hi
<3sup IDw(k,.k, . ,a)— Dw(k; .k, . ,a").

The compactness of the domain implies that D w is uniformly continuous: as
g—0, | Dy(k,a) — Dy(k',a’)| =0, in other words Dy varies continuously.

Finally, we can show that Dy is actually the derivative of y by again using
the uniform continuity of Dw to show that the integral form of the remainder
in period ¢, which is made of terms of the form

1
{ (1 = Dwik,_, +sh,_ k,+ sh,a+sh) — Dwik,_ .k, a)ds

vanishes uniformly across periods as h—0.

This shows that & is C'. Moreover, the mapping B: /%— R defined by
B(k)=X=, Pk, is continuous and linear, and thus C*. Since ¢ is then a
composition of the form B(y), it too is C'.

QED
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