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SELF-CONFIRMING EQUILIBRIUM

By Drew FUDENBERG aND Davip K. LEVINE!

In a self-confirming equilibrium, each player’s strategy is a best response to his beliefs
about the play of his opponents, and each player’s beliefs are correct along the equilib-
rium path of play. Thus, if a self-confirming equilibrium occurs repeatedly, no player ever
observes play that contradicts his beliefs, even though beliefs about play at off-path
information sets need not be correct. We characterize the ways in which self-confirming
equilibria and Nash equilibria can differ, and provide conditions under which self-con-
firming equilibria correspond to standard solution concepts.

Keyworps: Nash equilibrium, self-confirming equilibrium, correlated equilibrium,
extensive-form games, learning in games.

1. INTRODUCTION

NASH EQUILIBRIUM AND ITS REFINEMENTS describe a situation in which (i) each
player’s strategy is a best response to his beliefs about the play of his opponents,
and (ii) each player’s beliefs about the opponents’ play are exactly correct. We
propose a new equilibrium concept, self-confirming equilibrium, that weakens
condition (ii) by requiring only that players’ beliefs are correct along the
equilibrium path of play. Thus, each player may have incorrect beliefs about
how his opponents would play in contingencies that do not arise when play
follows the equilibrium, and moreover the beliefs of different players may be
wrong in different ways.

The concept of self-confirming equilibrium is motivated by the idea that
noncooperative equilibria should be interpreted as the outcome of a learning
process, in which players revise their beliefs using their observations of previous
play. Suppose that each time the game is played, the players observe the actions
chosen by their opponents, but that players do not observe the actions their
opponents would have played at the information sets that were not reached
along the path of play. Then, if a self-confirming equilibrium occurs repeatedly,
no player ever observes play that contradicts his beliefs, so the equilibrium is
“self-confirming” in the weak sense of not being inconsistent with the evidence.
By analogy with the literature on the bandit problem (e.g., Rothschild (1974))
one might expect that a non-Nash self-confirming equilibrium can be the
outcome of plausible learning processes. This point was made by Fudenberg and
Kreps (1988), who gave an example of a game in which a simple learning
process converges to a non-Nash outcome unless the players engage in a
sufficient amount of “experimentation” with actions that do not maximize the

! This paper contains the sections on self-confirming equilibrium from the earlier paper “Steady
State Learning and Self-Confirming Equilibrium.” We thank David Kreps for many helpful
conversations. Pierpaolo Battigalli, Martin Hellwig, three referees, and conference participants at
Luminy, Ohio State, and Stonybrook made useful comments. National Science Foundation Grants
89-07999-SES, 90-23697-SES, 88-08204-SES, and 90-9008770-SES, and the John Simon Guggenheim
Foundation provided financial support. We thank the IDEI, Toulouse, for its hospitality.
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current period’s expected payoff. Our notion of self-confirming equilibrium was
developed to capture the implications of learning when players do little or none
of this experimentation.

The idea of self-confirming equilibrium is implicit in the example of
Fudenberg and Kreps. Our contribution here is to give a formal definition of the
concept, and to explore its properties more fully. We show that there are three
reasons that a self-confirming equilibrium outcome may not be the outcome of a
Nash equilibrium. These are: (i) two players can have inconsistent beliefs about
the play of a third at an information set that is relevant to both of them:;
(ii) different pure strategies that a player assigns positive probability may be best
responses to different beliefs about his opponents’ play; and (iii) a player’s
subjective uncertainty about the play of two opponents may be correlated. If all
three effects are absent, the equilibrium outcome can be supported by a Nash
equilibrium. When the first effect is absent, we say that the self-confirming
equilibrium is consistent; every outcome of a consistent self-confirming equilib-
rium is also the outcome of one of Forges’ (1985) extensive-form correlated
equilibria. Moreover, all self-confirming equilibria are consistent in games with
observed deviators. This condition, which means that deviations by different
players cannot lead to the same information set, is satisfied in all two-player
games of perfect recall, and also in all multistage games with observed actions.

Although self-confirming equilibrium is motivated by the idea of a dynamic
learning process, such processes are not explicitly modelled in this paper. One
learning-theoretic foundation for self-confirming equilibrium is presented in our
(1993) paper “Steady State Learning and Nash Equilibria,” which considers the
steady states of a system in which a fixed stage game is played repeatedly by a
large population of players who are randomly matched with one another.
Players learn about their opponents’ strategies by observing the actions played
in their own matches; they do not observe the intended off-path play of their
opponents or the actions chosen in other matches. Individual players remain in
the population a fixed number of periods; new players enter each period to keep
the total population size constant. Entering players believe that the opponents’
play corresponds to a fixed but unknown steady-state distribution; players
update their exogenous priors over this distribution using Bayes’ rule. Players
choose their strategies in each period to maximize their expected present value
given their beliefs. If the lifetimes are long, then steady state distributions
approximate those of self-confirming equilibria. Moreover, if the discount fac-
tors are low, so that players optimally choose to do little experimentation, then
non-Nash outcomes can be steady states. (If the players are sufficiently patient,
they will do enough experimentation to learn the relevant aspects of off-path
play, and steady states approximate Nash equilibria.)

Kalai and Lehrer (1991b) consider an alternative model of learning, in which
a single player 1, player 2, etc. play a repeated game. They show that, if the
priors and the true play jointly satisfy an “absolute continuity’”’ condition, then
play will eventually resemble that of a “private-beliefs equilibrium.” This
concept refines self-confirming equilibrium by requiring that (1) each player’s
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subjective uncertainty about his opponents corresponds to the product of
independent marginal distributions, and (2) each player has “unitary beliefs,”
meaning that each strategy a player assigns positive probability is a best
response to the same (possibly incorrect) beliefs about his opponents.

Kalai and Lehrer (1991a) show that private-beliefs equilibria are outcome-
equivalent to Nash equilibria. Our results also yield this conclusion and show
that it is due to the fact that the extensive form they consider has observed
deviators. Theorem 1 shows that, in such games, every self-confirming equilib-
rium is consistent, and Theorem 3 shows that consistent self-confirming equilib-
ria with independent, unitary beliefs are outcome-equivalent to Nash equilibria.

The Kalai-Lehrer learning model, like ours, supposes that players learn about
their opponents’ strategies by observing the actions that are played. Since the
idea of the self-confirming equilibrium concept is to model the possibility that
certain mistakes in beliefs can persist if not contradicted by the evidence,
different assumptions about what the players observe would lead to alternative
notions of equilibrium. The “conjectural equilibrium” of Battigalli (1987) takes
as data an “observation function” specifying what players see when each profile
is played; specifying that players see the corresponding terminal node yields our
concept as a special case.? The generality of conjectural equilibrium makes it
difficult to characterize. For this reason, we prefer to focus our attention on the
case where the players observe one another’s actions, which we believe corre-
sponds to many situations of interest.

To illustrate the relationship between Nash and self-confirming equilibrium,
note first that in a one-shot simultaneous-move game, every information set is
reached along every path, so that self-confirming equilibrium reduces to the
Nash condition that beliefs are correct at every information set. Somewhat less
obvious is the fact that self-confirming equilibrium must have Nash outcomes in
any two-player game, so long as each player has “unitary beliefs” in the sense
described above.

Unitary beliefs seem natural if we think of equilibrium as corresponding to
the outcome of a learning model with a single player 1 and a single player 2, and
so forth, as in Fudenberg and Kreps. We were led to consider the alternative of
heterogeneous beliefs, which allows each strategy a player uses with positive
probability to be a best response to a different belief about his opponents, by
our study of learning in models where a large number of individual players are
randomly matched each period. In such models, heterogeneous beliefs can arise °
because different individuals have different learning experiences or different
prior beliefs. When heterogeneous beliefs are allowed, the self-confirming

2 In our terminology, Battigalli’s concept imposes unitary beliefs. More strongly, he also supposes
that beliefs are point-valued, that is that each player’s beliefs correspond to a point mass on a
particular strategy profile for his opponents. Rubinstein and Wolinsky (1990) refine this concept by
adding a condition in the spirit of rationalizability. We should also mention the “conjectural
equilibrium” of Hahn (1977), in which firms misperceive the market excess demand function, but
correctly predict the prevailing price. Hahn shows that such misperceptions can lead to non-Walra-
sian outcomes, and that these outcomes can persist even if the firms’ conjectures are ‘“locally
correct.”
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equilibria of two-player games need not be Nash equilibria, but rather are Nash
equilibria of an extended version of the game in which players can observe the
outcome of certain correlating devices, as in Forges’ (1985) extensive-form
correlated equilibria.

Since self-confirming equilibrium requires that beliefs be correct along the
equilibrium path of play, it is inherently an extensive-form solution concept, in
contrast to Nash equilibrium, which can be defined on the strategic form of the
game. Indeed, two extensive-form games with the same strategic form can have
different sets of self-confirming equilibria. This conclusion runs counter to the
argument, recently popularized by Kohlberg and Mertens (1986), that the
strategic form encodes all strategically relevant information, and two extensive
forms with the same strategic form will be played in the same way. However,
dependence on the extensive form is natural when equilibrium is interpreted as
the result of learning, as the strategic form does not pin down how much of the
opponents’ strategies each player will observe when the game is played. In our
view, the contrast between our approach and that of Kohlberg and Mertens
shows that it is better to specify the process that leads to equilibrium play
before deciding which games are equivalent or which equilibria are most
reasonable.

2. THE EXTENSIVE FORM GAME

Consider an I-player extensive-form game of perfect recall. The game tree X,
with nodes x € X, is finite. The initial node, 0, corresponds to Nature’s moves, if
any; the terminal nodes are z € Z c X. Information sets, denoted by 4 € H, are
a partition of X\ (Z U 0). The information sets where player i has the move are
H,cH, and H_;=H\H, are information sets for other players. The feasible
actions at information set 4; € H are denoted A(h;).

A pure strategy for player i,s;, is a map from information sets in H, to
actions satlsfymg s{(h;) € A(h)); S is the set of all such strategies. We let
sES = X S; denote a strategy profile for all players, and s_,€S§_
X LS Each player i receives a payoff that depends on the termlnal node
Player i’s payoff function is denoted u;: Z — R; each player knows (at least) his
own payoff function, the extensive form of the game, and the probability
distribution over Nature’s moves. Let A(-) denote the space of probability
distributions over a set. Then a mixed strategy profile is o € X f=1A(S,-).

Let Z(s;) be the subset of terminal nodes that are reachable when s; is
played. Let H(s;) be the set of all information sets that can be reached if s; is
played; for a mixed strategy o;, set H(0;) = U ; c supportco,y FI(5:)-

We will also need to refer to the information sets that are reached with
positive probability under o, denoted H(o). Notice that if o_; is completely
mixed, then H(s;,o_,)=H(s,), as every information set that is potentially
reachable given s; has positive probability.

In addition to mixed strategies, we define behavior strategies. A behavior
strategy for player i,;, is a map from information sets in H; to probability
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distributions over moves: w(h;) € A(A(h;)), and II, is the set of all such
strategies. As with pure strategies, m € IT = X f=117,., andw_,ell_;= Xj#iﬂj.
Let p(x|m) be the probability that node x € X is reached under profile 7, and
let p(h;|m) =X, p(x|m). (Note that the probability p will reflect the proba-
bility distribution on nature’s moves.)

Since the game has perfect recall, by Kuhn’s Theorem each mixed strategy o;
induces an equivalent behavior strategy denoted #(-|o;).> In other words,
7,(h;|a;) is the probability distribution over actions at 4, induced by o;.

Since we have assumed that all players know the structure of the extensive
form, their own payoff function, and the probability distribution on nature’s
moves, the only uncertainty each player faces concerns the strategies his
opponents will play. To model this “strategic uncertainty,” we let u; be a
probability measure over II_;, the set of other players’ behavior strategies. Fix
s;. Then the marginal probability of a terminal node z is

(2.1) pi(zls;, ;) =/pi(zlsi’77—i)/“"i(d77—i);

the marginal probability p(hjlsi,,u,i) of an information set is the sum of the
marginal probabilities of its terminal successors.
This in turn gives rise to preferences

(22) ui(s;, 1) = )y pi(zlsi’:u'i)ui(z)‘

zeZ(s,)

It is important to note that even though the beliefs u; are over opponents’
behavior strategies, and thus reflect player i’s knowledge that his opponents
choose their randomizations independently, the marginal distribution p,( |s;, u;)
over terminal nodes can involve correlation between the opponents’ play. For
example, if players 2 and 3 simultaneously choose between U and D, player 1
might assign probability 1/4 to 7,(U)=m,(U)=1, and probability 3/4 to
m,(U) = m4(U) = 1/2. Even though both profiles in the support of u; suppose
independent randomization by players 2 and 3, the marginal distribution on
their joint actions is p(U,U) =7/16 and p(U, D) =p(D,U)=p(P, D) =3/16,
which is a correlated distribution. This correlation reflects a situation where

3 Two strategies s; and s, for player i are said to be equivalent if they lead to the same
distribution over terminal nodes for all s_;. The behavior strategy equivalent to o, is uniquely
determined at all information sets that are not precluded by o; (that is, at all information sets
h; € H,N H(o;)) by the following formula, where R(h,) ={s;|h; € H(s,)} are those s; that do not
preclude A;:

#,(hilo;)(a;) = Z o(s;) Z o,(s;)-
{sils; € Ry(h;), 5,(h,) = a;} {silsi € Ri(h)}
At information sets in H;\ H(oc;), we arbitrarily define /(h,lo;) by 7(h;lo)a;)=
Lisisihy—=ay0i(s,). For a discussion of Kuhn’s Theorem, see for example Fudenberg and Tirole
(1991, Chapter 3), or Kreps (1990, Chapter 11).
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player 1 believes some unobserved common factor has helped determine the
play of both of his opponents.*

3. SELF-CONFIRMING EQUILIBRIUM AND CONSISTENT SELF-CONFIRMING
EQUILIBRIUM

One way to define a Nash equilibrium is as a mixed profile o such that for
each s; € support(o;) there exists beliefs w; such that

s; maximizes u;( -, u;), and
,u,,-[{w_ile(hj) = ‘ﬁ'j(hj|03-)}] =1 forallh;eH_,.

In other words, each player optimizes given his beliefs, and his beliefs are a
point mass on the true distribution.

One of the goals of this paper is to introduce the notion of a self-confirming
equilibrium, which weakens Nash equilibrium by relaxing the second require-
ment above. Instead of requiring that beliefs are correct at each information set,
self-confirming equilibrium requires only that, for each s; that is played with
positive probability, beliefs are confirmed by the information revealed when s,
and o_; are played, which we take to be the corresponding distribution on
terminal nodes. This corresponds to the idea that the terminal node reached is
observed at the end of each play of the game: Learning should not be expected
to lead to correct beliefs about play at information sets that are never reached.’

DeriniTiON 1: Profile o is a self-confirming equilibrium if for each player
i, s; € support(o;) there exists beliefs u; such that

(i) s; maximizes u,(-,u;), and

(i) wf{m_dm(h;) = #(hjlo;)}] =1 forall j+iand h;e H(s;,0_,).

Condition (ii) requires that player i’s beliefs be concentrated on strategy
profiles that coincide with the true distribution at information sets that are
reached with positive probability when player i plays s;. His beliefs about play
at other information sets need not be concentrated on a single behavior
strategy, and at these information sets his beliefs can incorporate correlation of
the kind discussed in the last section. We emphasize that each s; € support(c;)
may be confirmed by a different belief ;. In the definition of Nash equilibrium,
this flexibility is vacuous, as each w; must be exactly correct; the flexibility

*We thank Robert Aumann for convincing us of the importance of this kind of subjective
correlation.

One way to obtain Hahn’s conjectural equilibrium in our setting is to suppose that the players
do not observe the terminal node, but rather observe only the market price, that this price depends
both on the outputs chosen and on a demand curve by Nature, and that (in contrast to our
assumption of the last section) the players do not know the probability distribution over Nature’s
moves. (If players did know the distribution, then repeated observations of the market price would
identify the output of their opponents.)
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matters once beliefs are allowed to be wrong. This diversity of beliefs is natural
in a learning model with populations of each type of player: different player i’s
may have different beliefs, either due to different priors or to different observa-
tions. Section 6 considers the restriction of “unitary beliefs,” which requires
that the same beliefs u; be used to rationalize each s; € support(o;).

DEerFINITION 2: Profile o is a consistent self-confirming equilibrium if for all
players i and each s; € support(o;) there are beliefs u; such that

(i) s; maximizes u;(-,u;), and

(i) wl{moim(h) = #(k1)}] =1
for all j +#i and h; such that h; € H(s;).

In words, self-confirming equilibrium requires that, for each s, that player i
gives positive probability, player i correctly forecasts play at all information sets
that will be reached when player i plays s; and the opponents play o_,.
Consistent self-confirming equilibrium requires further that player i’s beliefs be
correct at all information sets that could be reached if player i plays s;. Notice
that if there are two players, i and j, either of whom can deviate and cause
information set % to be reached, then both players’ beliefs about play at 4 are
correct, and in particular are equal to each other. This is why we call the
equilibrium consistent.

Note that consistency as we have defined it is a property of the equilibrium
strategies, and not of the particular beliefs used to support them: a strategy
profile o is consistent if for each s; € support(s;) there are some beliefs that
satisfy the required conditions. Moreover, consistency is less stringent than it
might first appear, because Definition 2 is equivalent to the requirement that for
each s, € support(o;), there is a u; that satisfies (i) and the apparently weaker
condition (ii"):

(i) w[{m_ilm(h;) =#(hjlo;)}] =1 forall j+iandall h; such that
(a)  h;eH(s},o_;) for some s; and
(b) h; € H(s;).

Condition (ii”) differs from (ii’) in that it concerns only those information sets
that can be reached both by player i playing s;, and by player i playing some s;
and his opponents sticking with the equilibrium strategies o _;. Intuitively, the
reason these two definitions are equivalent is that no player cares about
opponents’ play at information sets that he does not expect to be reached
regardless of how he plays. To verify this intuition we will define what it means
for an information set to be relevant under given beliefs, show that the expected
payoffs depend only on beliefs at relevant information sets, and then verify that
conditions (ii’) and (ii") differ only at information sets that are not relevant.
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DEerInNITION 3: Information set h; is relevant to player i given beliefs . ; if there
exists an s; € S; such that p,(hls;, u,) > 0.

Let R/(u;) denote the set of all information sets that are relevant to player i
given ;. For any subset Q of H_;, I1%,= X, A(A(h )) may be viewed as a
subspace of II_; corresponding to the 1nformat10n sets in Q, and IT~2=
X, e H. QA(A(h])) is the complementary subspace. Let w2 denote the
marlginal distribution that u; induces on Q, so that

Q Bg, = Bgl,'fT Q d7T~Q
)= [, pu(Br0)
where BY; is a (Borel) subset of I,

Lemma 1: If u; and [i; are two distributions on II_; such that u%®d = pR#),
then

(a) R(p;) =R(4;),
(b) u(s;,m;) =u,(s;, ;) foralls,.

Proor: (a) If this is false, then either 3k, € R(,u )/R(n;) or 3h; e
R(u;)/R(4;). In the first case, choose a path of actions & leading to x € h;, and
such that p/(xl|s;, 4,) > 0 for some s;. (Such a path exists because 4, ER([.L ).)
This path of actions is ordered by the precedence relation in the tree; index the
path by ¢, and let «(¢) denote the player who moves at the ¢th step of the path.
Let ¢t* be the lowest index ¢ such that

ol - (&(t) @ support(m () }] = 0.

(Such a ¢ exists because ;& R(u;).)

Then the information set corresponding to t* is relevant under u. Since
uRwd = fRMW) and the information set corresponding to t* + 1 is relevant under
[;, this information set must be relevant under u;, a contradiction. The proof
for the case where h; € R(u,)/R(4i,) is similar.

(b) This follows immediately from (a) and the fact that the expected payoft to
any strategy s; depends only on play at nodes which have positive probability
under (s;, u;). Q.E.D.

TueoreM 1. Conditions (ii') and (ii") give the same set of consistent self-con-
firming equilibria.

Proor: Suppose that for each player i and each s; € support(s;) there are
beliefs w; that satisfy conditions (i) and (ii"). For each such s;, define new
beliefs fi; by the conditions

ol {m il (h;) = #,(hl0;)}] =1 forall j#iand h;€H(s;), and

A~ H(s;) ~Hi
7 HOD = gy~ HGD,
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Since fi; and u; only differ at nodes that are irrelevant under u;, the conclusion
follows. QO.E.D.

We have three reasons for being interested in the additional restrictions
imposed by the consistency conditions (ii’) and (ii”). The first is as a tool for
understanding the reasons that self-confirming equilibria can fail to be Nash.
Inconsistent beliefs, as in Example 1 below, are one such reason, but as we will
see, even consistent self-confirming equilibria can have non-Nash outcomes.
Second, and relatedly, all self-confirming equilibria are consistent in games with
observed deviators.

Finally, the consistency condition (ii”) is of interest because player i will
accumulate at least this much information in a learning model if his opponents
play each of their strategies sufficiently often, but player i repeatedly plays s;.
That is, consistent self-confirming equilibrium describes a situation in which
player i does not experiment himself, but does observe experiments by his
opponents. The asymmetry involved in this state of affairs may be puzzling at
first sight, but it corresponds to a situation that we think is of interest.
Specifically, suppose that there are a large number of player 1’s, player 2’s, etc.,
and consider the sort of ‘“independent types” perturbations studied in
Fudenberg, Kreps, and Levine (1988), where with probability near 1 a player’s
payoff function is the u; originally specified, while with some small probability
the payoff functions are different, and in particular every pure strategy of each
player is the unique optimal response for some “type” that has positive
probability.

In a large population of players, most player i’s will be ‘“normal” and have
payoff function u;, while a small proportion will be “crazy.” An individual
player i who plays many times will then usually meet “normal” opponents, so
that his expected payoff will be (approximately) determined by how the “nor-
mal” types play. However, a “normal” type of player i who plays a fixed strategy
s; in every period will eventually encounter enough “crazy” player j’s, j # i, to
learn the overall distribution of play in the population at every h; € H(s,),
conditional on k; being reached. To show that player i’s beliefs will eventually
satisfy condition (ii”), it thus suffices to explain why the observed distribution of
play corresponds to the play of the normal types at all information sets that
satisfy clauses (a) and (b) of the condition.

The observed distribution at an information set 4; will correspond to the play
of the normal player j’s if, conditional on &; being reached, player j is (much)
more likely to be normal than to be crazy. In particular, this will be the case if
h; is on the equilibrium path, or if it can only be reached if player j doesn’t

J

deviate. However, as pointed out by a referee, observed play at 4; need not

correspond to the play of the normal type of player j if &; can be reached by j’s

deviations. But since the game has perfect recall, if 4; is not on the equilibrium

path H(o), and if for some deviation s;, h; Eﬁ(sj, o_;), then for i #j there is
no s; such that h; € H(s;,o_,). (Otherwise, player j wouldn’t be able to

distinguish player i’s deviations from his own.) Hence, although player i’s
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beliefs need not correspond to the play of the normal player j at every k j» player
i’s beliefs do correspond to the play of the normal player j at every h; that
satisfies clauses (a) and (b) of condition (ii").

Note, though, that if a normal player i always plays s;, he will not learn the
play at information sets not in H(s;), even though the “crazy” types of player i
play strategies other than s;. This explains why consistent self-confirming
equilibrium treats a player’s own experiments differently than those of his
opponents.’

Note also that in a one-shot simultaneous-move game, all information sets are
on the path of every profile, so the sets H(s;,o_;) are all of H, and condition
(ii) requires that beliefs be exactly correct. Hence in these games, all self-con-
firming equilibria are Nash. In more general games, the self-confirming equilib-
ria can be a larger set, as shown by the examples of the next section.

4. WHEN ARE SELF-CONFIRMING EQUILIBRIA CONSISTENT?

This section begins with an example of a self-confirming equilibrium that is
not consistent self-confirming. The example has the property that one player
cannot distinguish between deviations by two of his opponents; we show that in
the opposite case of “unobserved deviators” any self-confirming equilibrium is a
consistent self-confirming equilibrium.

ExampLE 1 (Fudenberg-Kreps): In the three payer game illustrated in Figure
1, player 1 moves first. If he plays A;, player 2 moves next; if he plays D,,
player 3 gets the move. If player 2 gets the move, he can either play 4,, which
ends the game, or play D,, which gives the move to player 3. The key feature of
the game is that if player 3 gets the move, he cannot tell whether player 1
played D, or player 1 played 4, and player 2 played D,.

Fudenberg and Kreps (1988) use this game to show that learning need not
lead to Nash equilibrium even if players are long-lived. Suppose that player 1
expects player 3 to play R and player 2 expects player 3 to play L. Given these
beliefs, it is optimal for players 1 and 2 to play 4, and A4,. Moreover, (A,, 4,)

® Our discussion here glosses over the fact that for any small but noninfinitesmal &’ probability of
the crazy types, the observed distribution will approximate the play of the normal types but will not
exactly equal it, so that the beliefs would be within some & of the play of the normal types at the
information sets covered by (a) and (b). We believe that the standard sort of upper hemicontinuity
argument would show that the resulting “e-consistent self-confirming equilibria” converge to
consistent self-confirming equilibria as ¢ goes to 0, but we have not written out the details. Kalai
and Lehrer (1991a) provide a formal limit argument for a closely related sort of approximately
correct beliefs.

A second motivation yields a concept related to, but weaker than, the consistency condition.
This motivation supposes that all player i’s have the stage game payoffs u;, that most of them have
low discount factors, but that a small proportion have discount factors near 1. Then these patient
players will do every worthwhile experiment infinitely often, and in the process the nonpatient
players will get a chance to learn about some information sets off of the equilibrium path. However,
we show by example in Fudenberg and Levine (1991) that even a completely patient player may
optimally choose never to play some of his strategies, so this model will not lead a myopic player i to
have to correct beliefs at all information sets in H(s;).
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(3,0,0) (0,3,0) (3,0,0) (0,3,0)
FIGURE 1

is a self-confirming equilibrium. However, it is not a Nash equilibrium outcome:
Nash equilibrium requires players 1 and 2 to have the same (correct) beliefs
about player 3’s play, and if both have the same beliefs, at least one of the
players must choose D. (If the beliefs assign probability more than 1/3 to L
and 2 plays A,, then 1 plays D,, while if the beliefs assign probability more
than 1/3 to R and 1 plays A, then 2 plays D,.)

When this example has been presented in seminars, the following question
has frequently been raised: Shouldn’t player 2 revise his beliefs about player 3
in the direction of 3 playing R when he sees player 1 play 4,? And, in the spirit
of the literature on the impossibility of players “agreeing to disagree” (Aumann
(1976), Geanakoplos and Polemarchakis (1982), and so forth) shouldn’t players
1 and 2 end up with the same beliefs about player 3’s strategy?

Our response is to note that, while this sort of indirect learning could occur in
our model, it need not do so. First, the indirect learning supposes that players
know (or have strong beliefs about) one another’s payoffs, which is consistent
with our model but is not necessarily the case. Second, even if player 2 knows
player 1’s payoffs, and hence is able to infer that player 1 believes player 3 will
play R, it is not clear that this will lead player 2 to revise his own beliefs. It is
true that player 2 will revise his beliefs if he views the discrepancy between his
own beliefs and player 1’s as due to information that player 1 has received but
player 2 has not, but player 2 might also believe that player 1 has no objective
reason for his beliefs, but has simply made a mistake. The ‘“‘agreeing to
disagree” literature ensures all differences in beliefs are attributable to objec-
tive information by supposing that the players’ beliefs are consistent with
Bayesian updating from a common prior distribution. But when equilibrium is
interpreted as the result of learning, the assumption of a common prior is
inappropriate. Indeed, the question of whether learning leads to Nash equilib-
rium can be rephrased as the question of whether learning leads to common
posterior beliefs starting from arbitrary priors.

While (A4,, 4,) in Example 1 is a self-confirming equilibrium (with unitary
beliefs) it is not a consistent self-confirming equilibrium. To see this, note that
player 3’s information set can be reached if player 1 sticks to his equilibrium
action A4, and player 2 deviates, and also if player 2 sticks to 4, and player 1
deviates. Hence condition (ii’) requires that both player 1 and player 2 have
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correct beliefs at £, and in particular both of their beliefs must be the same.
The reason that non-Nash outcomes can be obtained by allowing players 1 and
2 to disagree about play at A5 is that either of them can deviate and cause 45 to
be reached. This particular source of non-Nash behavior is absent in games that
satisfy the following definition.

DerFniTION 4: A game has observed deviators if for all players i, all strategy
profiles s and all deviations s; #s,, h € H(sj, s _;)\ H(s) implies that there is no
s'_; with h € H(s;, s'_)).

In words, this definition says that if some deviation from o by player i leads
to a new information set 4, that is not on the equilibrium path, then the
information set cannot be reached if player i plays s;, Games of perfect
information satisfy this condition, as do repeated games with observed actions.
More generally, the condition is satisfied by all “multi-stage games with ob-
served actions,” meaning that the extensive form can be parsed into “stages”
with the properties that the beginning of each stage corresponds to a proper
subgame (Selten (1975)), and that within each stage all players move simultane-
ously.® The following result shows that the condition is also satisfied in all
two-player games of interest:

LeMMA 2: Every two-player game of perfect recall has observed deviators.

ProoF: Suppose to the contrary that there exists a profile s = (s, s,), and
information set & such that & & H(s,,s,), but h € H(s,, s;) for some s, and
h € H(s}, s,) for some s}. If h € H,, then player 1 cannot distinguish between s,
and s7, while 2 € H, implies that player 2 cannot distinguish between s, and .

Q.E.D.

THEOREM 2: In games with observed deviators, self-confirming equilibria are
consistent self-confirming.

Proor: The idea is simply that in games with observed deviators, the only
information sets covered by condition (ii”) are those that are on the equilibrium
path. Suppose that o is a self-confirming equilibrium, and for each player i and
s; € support(o;) let u,(+;s;) be beliefs satisfying conditions (i) and (ii) of Defini-
tion 1. We claim that these same beliefs satisfy condition (ii”) of Definition 2. If

8See Fudenberg and Tirole (1991) for a more detailed explanation of multi-stage games; we
introduced the definition in Fudenberg and Levine (1983). Note that the extensive form in Example
2 below is not a multi-stage game with observed actions, but is a game with observed deviators.
Moreover, splitting player 1’s information into two consecutive choices, the first one being 4 or
~ A, yields a multi-stage game with observed actions that has the same reduced strategic form and
the same set of self-confirming equilibria. This emphasizes that from the viewpoint of self
confirming equilibria, observed deviators is the more fundamental property. In a private communi-
cation, Battigalli has shown that observed deviators is equivalent to the condition that the set of
strategy profiles that reaches any given information set be a cross-product; this condition is called
“strategic decomposability” in Battigalli (1991).
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not, there must be a player i, s; € support(s;), and h; where (ii') is violated for
beliefs u,(;s,); since o is self—conﬁrmlng, this h; is not in H(s;,o_,). Hence we
have that (a) h e H(s,,o_)\H(s,,o_,) for some s; and (b) h; EH(s) Disre-

gard (b) for the moment and cons1der the 1mpllcat10ns of (a) Since h; €
H(s;,o_;) implies that h; € H(s},s_;) for some s_, € support(c_,), and h; &
H(s;o_ ) implies that h eEH(s,,s ;) for all s_, €support(o_,), there is an
s_; € support(a_l) such that h; eH(sl, s_,)\H(s,,s ). Hence observed devia-
tors implies that there is no s_; with h; € H(s;,s'"_,). This contradicts the
hypothesis (b) that /; € H(s)). Q.E.D.

COROLLARY: Self-confirming equilibria are consistent self-confirming in two-
player games.

5. CONSISTENT SELF-CONFIRMING EQUILIBRIUM AND EXTENSIVE-FORM
CORRELATED EQUILIBRIUM

Even consistent self-confirming equilibria need not be Nash. There are two
reasons for this difference. First, consistent self-confirming equilibrium allows a
player’s uncertainty about his opponents’ strategies to be correlated, while Nash
equilibrium requires that the beliefs be a point mass on a behavior strategy
profile. Second, consistent self-confirming equilibrium allows each strategy that
a player assigns positive probability to be a best response to different beliefs.
Our first example displays the consequences of correlated uncertainty.

ExampLE 2 [Untested Correlation]: In the game in Figure 2, player 1 can play
A, which ends the game, or play L,, M,, or R, all of which lead to a
simultaneous-move game between players 2 and 3, neither of whom observes
player 1’s action. In this game, A is a best response to the correlated distribu-
tion p(L,, L;) =p(R,, R;) = 1/2. Thus if player 1’s prior beliefs are either that
2 and 3 always play L, or that they always play R, then player 1’s best response
is to play A, and so A4 is the outcome of a self-confirming equilibrium.

However, we claim that A is not a best response to any strategy profile for
players 2 and 3. Verifying this is straightforward but tedious: Let p, and p; be
the probabilities that players 2 and 3, respectively, assign to L, and L,. In order

Lo 411 0-1,1]]-41-1 0-11] 01,1 31,1
Ro[0-1.1 411011 41-1{|3.-1,1 01,1

FIGURE 2
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for A to be a best response, the following 3 inequalities must be satisfied:
(5.1) 4[pyps— (1—py)(1—p3)] <1, or p,+p3<5/4,

(52)  4[-p,ps+(1-p)(1—-p3)] <1, or p,+p;>3/4, and
(53)  p(1-p3)+(1-py)ps<1/3.

We will show that when constraints (5.1) and (5.2) are satisfied, (5.3) cannot be.
For any p, < 1/2, the left-hand side of (5.3) is minimized when pj; is as small as
possible, that is, for p; = 3/4 — p,. The minimized value is 2p3 —3/2p, + 3 /4,
and this expression is minimized over p, at p, =p;=3/8; at this point the
left-hand side of (5.3) equals 30/64 > 1/3. The case p, > 1/2 is symmetric.

We stress that the correlation in this example need not describe a situation in
which player 1 believes that players 2 and 3 actually correlate their play. To the
contrary, player 1 might be certain that they do not do so, and that she could
learn which (uncorrelated) strategy profile they are using by giving them the
move a single time. These competing explanations for the correlation—call
them “objective” correlation and “subjective” correlation—cannot be distin-
guished in a static, reduced-form model of the kind considered in this paper.
However, our (1991) paper on steady-state learning shows that the non-Nash
outcome of Example 2 can be the steady state of a learning process where
players are certain that their opponents’ actual play is an uncorrelated behavior
profile.

As we indicated above, there is another way that consistent self-confirming
equilibria can fail to be Nash: The self-confirming concept allows each strategy
that a player assigns positive probability to be a best response to different
beliefs. This possibility allows for non-Nash play even in two-player games. The
most immediate consequence of these differing beliefs is a form of convexifica-
tion, as in the following example.

ExampLE 3 [Public Randomization]: In the game in Figure 3, player 1 can
end the game by moving L or he can give player 2 the move by choosing R.
Player 1 should play L if he believes 2 will play D, and should play R if he
believes 2 will play U. If player 1 plays R with positive probability, player 2’s
unique best response is to play U, so there are two Nash equilibrium outcomes,
(L) and (R,U). The mixed profile ((1/2L,1/2R),U) is a self-confirming
equilibrium whose outcome is a convex combination of the Nash outcomes:

up B
1 /
(212) ~ -
L R
X

FiGURE 3

(1,0)
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Player 1 plays L when he expects player 2 to play D, and R when he expects 2
to play U, and when he plays L his forecast of D is not disconfirmed.
(Moreover, this equilibrium is clearly independent.)

Besides convexifying the set of Nash equilibria, the additional randomization
by one player may lead to entirely different play by another. Example 3 is a
two-stage game, with only one player moving in each stage. Our next example
presents a more complicated situation, in which players 1 and 2 move simultane-
ously in the first stage, followed by player 2 moving alone in the second stage.
As in Example 3, player 1 has two possible beliefs about player 2’s second-stage
play, which leads player 1 to randomize in the first stage, even though he cannot
play a mixed strategy in Nash equilibrium. Moreover, because both players
move in the first stage, this randomization leads player 2 to play a first-period
action that is not a best response to any pure strategy of player 1, and hence
must have probability zero in any Nash equilibrium.

ExampLE 4: The extensive form shown in Figure 4 corresponds to a two-stage
game: In the first stage, players 1 and 2 play simultaneously, with player 1
choosing U or D and player 2 choosing L, M, or R. Before the second stage,
these choices are revealed. In the second stage, only player 2 has a move,
choosing between R (“Reward”) costing both players 0, and P (“Punish”)
costing both players 10. The payoffs are additively separable between periods.

We claim first that in any Nash equilibrium of this game, player 1 must play a
pure strategy and player 2 must play M in stage 1 with probability zero. If both
U and D have positive probability, then following every outcome of the first
stage that occurs with positive probability, player 2 must choose R. But then
player 1 would play U with probability 1. We conclude that player 1 must play a
pure strategy, and consequently player 2 cannot play M.

However, player 2 can play M with probability 1 in a self-confirming equilib-
rium: Let player 1’s strategy be o, = (3U, 1D), and let player 2’s strategy o, be
“play M in the first stage and play R in the second stage regardless of the
first-period outcome.” Player 2’s strategy is a best response to the strategy o,
that player 1 is actually playing, and U € support(o,) is a best response to o,.
The strategy D € support(o,) is not a best response to o,, but it is a best
response to the belief that player 2 will play R if player 1 plays D and P if

L M R
13,15 | 13,14 | 13,11
12,11 | 12,14 | 12,15

Stage 1

R P

| 00 [-10-10] stage 2

FIGURE 4
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player 1 plays U; and when player 1 plays D his forecast of what would have
happened if he had played U is not disconfirmed.

Although consistent self-confirming equilibria need not be Nash equilibria,
they are a special case of another equilibrium concept from the literature,
namely the extensive-form correlated equilibria defined by Forges (1985). These
equilibria, which are only defined for games whose information sets are ordered
by precedence (the usual case), are the Nash equilibria of an expanded game
where an “autonomous signalling device” is added at every information set, with
the joint distribution over signals independent of the actual play of the game
and common knowledge to the players, and the player on move at each
information set % is told the outcome of the corresponding device before he
chooses his move.’ Extensive-form correlated equilibrium includes Aumann’s
(1974) correlated equilibrium as the special case where the signals at informa-
tion sets after stage 1 have one-point distributions and so contain no new
information. The possibility of signals at later dates allows the construction of
extensive-form correlated equilibria that are not correlated equilibria, as in
Myerson (1986). Another example is based on the self-confirming equilibrium
we constructed in Example 4.

ExampLE 4 RevisiTED: We construct an extensive-form correlated equilib-
rium with the same distribution over outcomes as the self-confirming equilib-
rium in Example 4. The first-stage private signals describe play in that stage:
There is a probability 1/2 of the signals (U, M) and (D, M) in stage 1. The
strategies in stage 1 are to play the recommended action. The second-stage
pubic signal takes on two values, U and D. The strategy for player 2 in stage 2 is
to play P if player 1 played U and the second signal is D, and R otherwise. The
second-stage public signal is perfectly correlated with player 1’s first-stage
private signal. Let us check that it is a Nash equilibrium for the players to use
the strategies their signals recommend: Since player 1’s signal reveals whether
or not he will be punished for playing U, player 1 finds it optimal to obey his
signal. Player 2’s first signal is uninformative about player 1’s stage 1 play, and
so player 2 expects player 1 to randomize (1/2) — (1/2) in the first stage and
thus plays M. Player 2 cannot improve on the recommended strategies in the
second stage because he is only told to punish U when player 1’s first signal was
to play D, and if player 1 obeys his signal this will not occur. The role of the
second signal is to tell player 2 when to punish player 1 without revealing player
1’s play at the beginning of the first stage; if player 1’s play was revealed at this
point this would remove player 2’s incentive to play M. Note that while the
extensive-form correlated equilibrium and the self-confirming equilibrium have
the same distribution over outcomes, they involve different distributions over

o Forges shows, in the spirit of the revelation principle, that it suffices to work with a smaller set
of signalling devices. She also defines “communications equilibria,” which allow the players to send
messages in the course of play that influence subsequent signals.
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strategies: In a self-confirming equilibrium, if player 1 mixes between U and D,
then player 2 must respond to both U and D with R; player 1 sometimes plays
D because he incorrectly believes 2 will respond to U with P. In an extensive-
form correlated equilibrium, each player’s predictions about his opponents’
strategies are on average correct, so if player 1 sometimes believes that player 2
responds to U with P, then player 2 must assign positive probability to a
strategy that does so.

We should point out that the extensive-form nature of the correlations is
required, as player 2 cannot play M with probability 1 in a correlated equilib-
rium of the usual kind, which allows signals only at the initial stage. To see this,
suppose that probability distribution p € A(S) is a correlated equilibrium. If 1
plays U with, probability 1, 2 must play L, while if he plays D with probability 1,
2 must play R. So in this case the probability of M is zero. So now suppose that
both U and D have positive probability, and that player 2 plays M with
probability 1. Since player 1 is willing to play D, which has a lower first-period
payoff, he must expect that P has positive probability conditional on the
first-period outcome (U, M). But since P gives player 2 a lower payoff than R
does, and (U, M) has positive probability by assumption, player 2 cannot follow
(U, M) with a positive probability of P, and hence there is no correlated
equilibrium in which the probability of M is 1. Moreover, the probability of M
is bounded away from 1 in all correlated equilibria, because the set of corre-
lated equilibria is closed.

THEOREM 3: For each consistent self-confirming equilibrium of a game whose
information sets are ordered by precedence, there is an equivalent extensive-form
correlated equilibrium, that is, one with the same distribution over terminal nodes.

Proor: Let o be consistent self-confirming, and for each s, € support o;, let
w(s;) be beliefs satisfying conditions (i) and (ii’) of Definition 2 We now expand
the game by adding an initial randomizing device whose realization is partially
revealed as private information at various information sets. A realization of this
dev1ce is an [-vector with the ith component a pair (s;,w.,) with 5,€ S, and

=(m;); ., €11_,. The s, follow the probability dlstr1but10n o (and in particu-
lar s; and s; are 1ndependent fpr i #j). The distribution of 7 ; conditional on s
is w ,-(si). Intuitively, profile 7%, is the way player i expects to be “punished” if
he deviates from strategy s,.

Initially each player i is told s;. Subsequent revelations also depend upon s.
At information sets on the path of s, # € H(s), no additional information is
revealed. At information sets that can be reached only if two or more players
deviate from s no information is revealed. If h; € H(s},s_)\H{(s), so h;
reached by player i’s deviation, and J #1, then player J is told 7r’(h)

If h; € H(s), s_l)\H(s) and h; € H(s,s_,)\ H(s), then h, eH(s )and h; €
H(s s ;), so that in a cons1stent self-confirming equ1llbr1um player i’s bellefs
about play at h; are correct. A similar argument shows that player k’s beliefs
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are correct as well, so that the two beliefs are equal. It follows that w]?(hj) =
7r,-"(h ;) for j #1i, k, so only one distinct signal is received by ;.

Now consider the strategy profile § for the expanded game in which each
player j plays s; except at information sets (in the expanded game), where the
signal /(h;) is received. At such information sets j plays according to /(h;).

By construction, § induces the same distribution over terminal nodes as o
does. If player i’s opponents follow §, player i will never receive an additional
message, so player i is willing to play 7/(h,) at the probability-zero information
sets where player j deviates and i is told /(h;). Moreover, given the initial
message s;, opponents’ play is drawn from u,(s;), and s, is a best response to
w(s;) from condition (i) in the definition of self-confirming equilibrium. Hence §
is a Nash equilibrium of the expanded game. Q.E.D.

CoroLLARY: In games with observed deviators, every self-confirming equilib-
rium outcome is the outcome of an extensive form correlated equilibrium.

Theorem 3 fails if the hypothesis of consistency is dropped. To see this, let us
return to the game of Example 1. Since each player has only one information
set, extensive-form correlated equilibrium is equivalent to correlated equilib-
rium; since there is no Nash equilibrium in which players 1 and 2 play (A, 4,),
the probability of (A;, 4,) is bounded away from 1 in every correlated equilib-
rium. The reason is that the common prior supposed by correlated equilibrium
rules out situations in which player 1 always believes player 3 is likely to play R
and player 2 always believes player 3 is likely to play L.!° As shown by Theorem
3, consistent self-confirming equilibrium ensures that any two players’ beliefs
are compatible with a common prior, at least at the information sets that matter
to both of them.

Note also that not all outcomes of extensive-form correlated equilibria are the
outcomes of consistent self-confirming equilibria: Because self-confirming
equilibrium supposes that players choose their actions independently, the equi-
librium path of play must be uncorrelated, so not even every correlated
equilibrium outcome can be attained. In particular, since publicly observed
signals can lead to correlated play, consistent self-confirming equilibria cannot
generate every outcome that can be supported using public randomizing de-
vices. This suggests that it might be possible to find an interesting and tighter
characterization of consistent self-confirming equilibrium; we have not been
able to do so.

6. UNITARY BELIEFS AND NASH EQUILIBRIUM

So far we have seen three ways in which self-confirming equilibria can fail to
be Nash. First, two players can have inconsistent beliefs about the play of a
third, as in Example 1. Second, a player’s subjective uncertainty about his
opponents’ play may induce a correlated distribution on their actions, even

10 However, there is a correlated equilibrium in which (A4;, 4,) has probability 1/4.
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though he knows that their actual play is uncorrelated; this was the case in
Example 2. Finally, the fact that each player can have heterogeneous beliefs—
that is, different beliefs may rationalize each s; € support(o;)—introduces a
~kind of extensive-form correlation. Theorem 2 showed that in games with

observed deviators, self-confirming equilibria are consistent, thus precluding the
kind of non-Nash situation in Example 1. Theorem 4 shows that the combina-
tion of off-path correlation and heterogeneous beliefs encompass all other ways
that self-confirming equilibria can fail to be Nash.

DerFINITION 5: A self-confirming equilibrium o has independent beliefs if for
all players i and all s; € support(a;), the associated beliefs u; satisfy

/u,-( X I_Ij) = X.Mi(ﬁ;) for all (measurable) ﬁjgﬂj.

J#i J#i

A self-confirming equilibrium has unitary beliefs if for each player i the same
beliefs u; can be used to rationalize every s; € o;. That is, in Definition 1 (or 2),
we replace “[for all] s; € support(o;) Ju,” with “Ju, for all s; € support(a;).”

THEOREM 4: Every consistent self-confirming equilibrium with independent,
unitary beliefs is equivalent to a Nash equilibrium.

OutLINE OF Proor: Fix a consistent self-confirming equilibrium o with
independent, unitary beliefs. Thus for each player i, there is a u; such that
conditions (i) and (ii’) of Definition 2 are satisfied for all s; € support(s;), and u;
is a product measure on II_;.

We will construct a new strategy profile ¢’ that is a Nash equilibrium and has
the same distribution on terminal nodes as o does. The idea is simply to change
the play of all players j#i to that given by player i’s beliefs at all the
information sets that can be reached if i unilaterally deviates from o. The
unitary beliefs condition implies that “player i’s beliefs” are a single object. The
requirement that the equilibrium is consistent ensures that this process is
well-defined, as if deviations by two distinct players can lead to the same
information set, then their beliefs at that information set are identical. Finally,
the condition of independence says that player i’s beliefs u, correspond to the
behavior strategy profile 7_,(-|o”_;) corresponding to ¢’. The details are given
in the Appendix.

COROLLARY: In two-player games, every self-confirming equilibrium with uni-
tary beliefs is Nash.!!

" This is proved directly in Fudenberg and Kreps (1993), and in Battigalli (1987) for the case of
point-valued beliefs.
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7. GENERALIZATIONS AND EXTENSIONS

Self-confirming equilibrium describes a situation in which players know their
own payoff functions, the distribution over Nature’s moves, and the strategy
spaces of their opponents; the only uncertainty players have is about which
strategies their opponents will play. Moreover, as we explained in the introduc-
tion, the assumption that players’ beliefs are correct along the path of play
implicitly supposes that players observe the terminal node of the game at the
end of each play. Thus it is of some interest to consider how the assumptions
might be relaxed.

It would be interesting to see a characterization of the analog of self-confirm-
ing equilibrium for the case in which each player’s end-of-stage information is
precisely his own payoff; the key would be finding a tractable description of how
much information the payoffs convey. Another interesting case is that of games
of incomplete information, with the assumption that each player observes the
entire sequence of play and his own type, but not the types of his opponents.
We conjecture that if each player’s payoff depends on the sequence of actions
played and his own type, but not on the types of his opponents, and if all types
of each player i have the same “physical” extensive form, so that the incom-
plete-information game is an “elaboration” of an underlying complete-informa-
tion game in the sense of Fudenberg, Kreps, and Levine (1988), then the set of
self-confirming equilibria is the same whether or not the opponents’ types are
observed at the end of each round.

The other informational assumptions of self-confirming equilibrium can be
relaxed as well. It is easy to generalize self-confirming equilibrium to allow for
players who do not know the distribution of Nature’s moves. In this context our
convention that all of Nature’s moves are at the beginning of the tree is not
innocuous: When combined with the maintained assumption that players ob-
serve the terminal node of the tree, this convention implies that players will
learn the entire distribution of Nature’s moves regardless of the actions chosen
by players other than Nature. This assumption is natural if the uncertainty
modeled by Nature’s moves is not directly related to the players’ actions, as for
example if Nature’s move is the weather, for then we would expect both that the
weather is observed regardless of how the game is played, and that the
distribution over weather is not influenced by the players’ actions. However, if
Nature’s move models uncertainty about the productivity of a new technology,
we would not expect the move to be observed unless the technology is used, so
that players might persistently maintain incorrect beliefs about Nature’s move.
To model such situations we would want to embed Nature’s move in the tree
after the players’ decision nodes.

Yet another extension is to games where players do not know the extensive
form of the game, and in particular do not know the information that their
opponents possess when choosing their actions. At a formal level this uncer-
tainty can be represented as a game of incomplete information, that is by a
combination of moves by Nature. If players observe only one another’s actions,
but do not observe Nature’s moves, then players may maintain incorrect beliefs
about other players’ strategy spaces. For this reason, it appears that the
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resulting static equilibrium concept may be quite different from the one we have
developed here.

This paper has stressed the importance of the players’ information about one
another’s strategies. In applied work, it is also important to consider the
econometrician’s information about the players’ strategies, which may be dif-
ferent. Bresnahan and Reiss (1991) show that this difference can have serious
implications when observed play is assumed to correspond to a Nash equilib-
rium; the implications for estimating self-confirming equilibrium may be even
more striking.
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APPENDIX

ProOF OF THEOREM 4

We construct ¢’ in two steps. First, for each player i we construct a profile 1ri__i of behavior
strategies for player i’s opponents, such that (i) for all strategies s;, u,(s;, ;) = u,(s;, w-,), where the
second argument on the right-hand side of this equality should be read as beliefs corresponding to a
point mass on 7', and (ii) 7*; agrees with o at all information sets in H(o). That such a 7
exists will follow from the assumptions that beliefs are independent, and that the game has perfect
recall.

The procedure just described constructs (1 — 1) strategies {m}}; .., for each player k. We now use
these strategies to construct a single strategy profile ='. We do this by specifying that 7} (h;) =
mi(h,) if there exists an s; such that A, € H(s;,o_;). The assumption that the equilibrium is
consistent will ensure that this construction is well defined: If there exists an s; such that
hy € H(s;,0_;), and there exists an s; such that &, € H(s;, a_,-), then, as in the proof of Theorem 3,
both player i’s and player j’s beliefs must be correct, and so wj(h;) will equal v,’((hk). Having
constructed 7’ and its equivalent mixed strategy representation o’, we then verify that it is a Nash
equilibrium.

Step 1: Constructing the ' ;: For each player k, let &,: IT,: > 3, be the map that constructs a
mixed strategy that is equivalent to the given behavior strategy , by the rule

Se(m)(se) = TT (i) (se(hie))-

h,€H,

For a profile 7 _; of behavior strategies of player i’s opponents, define an equivalent mixed strategy
profile by ¢_J(w_;)= X, _,6,(m;), where X denotes the product of measures. Let u; , be the
marginal distribution of player i’s beliefs over player k’s behavior strategies.

Now for each i, define a probability distribution on S_; by

oli(s_)= f G_i(m_)(s_mldm_;]
H‘l
Using the definition of ¢_;, we have

o0 = [, (TTome Juldr-]

= L[l fnk‘;k(vk)(sk)lbi,k[dﬂkl
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If we now define o/ €3, by
oi(si) = fn G (m ) (s dmi il dmy ],
k

it is clear that o’ (s_;) =TI, ,,04(s;), so that ', €3 _,. Let #_;: 5_;—>II_; be the map that
assigns to each profile o_; of mixed strategies for player i’s opponents the equivalent behavior
strategy profile

F_(o_)= X #( |"'k)
k#i
and let

mli=7Li(cl) = X #(lof)
k#i

be behavior strategy profile equivalent to o’ ;.

Now consider replacing player i’s possibly diffuse beliefs about his opponents’ play by the single
strategy profile 7’ ;. By construction, u,(s;, u;) = u,(s;,7w°,) for all s;: Player i’s expected utility to
strategy s; when his beliefs are u; is the same as his expected utility to s; when his beliefs are a
point mass on 7' ;. It remains to show that m}(h;) = 7;(h;|0;) for all j+#i and all h; € H(0), i.e.
that 7 ; coincides with the true distribution along the path of play. Since player i’s beliefs u; assign
probability one to the subset of IT_; for which this is true, it is intuitive that the profile 7',
obtained by integrating u; should have the same property. Verifying this requires working through
the formulae for o ; and # (o). Fortunately, since

= (- |¢T/£) = fn Gr(mi)m;, ldm; ]
k

depends only on player i’s beliefs about player k, the required verification is exactly the same as
that given in Fudenberg and Kreps (1993) for the two-player case, so their calculations show that
wj(h;) =7, (h;|o;) for all j+iand all h; € H(o).

Step 2: We now construct the profile =’ by specifying that 7}(h,) = wi(h,) if there exists an s;
such that 4, € H(s;, 0_;). As we remarked earlier, the assumption that the equilibrium is consistent
ensures that this construction is well defined: If there exists an s; such that h; € H(s;,0_;), and
there exists an s; such that h, € H(s;,0_)), then h, € H(o;) N H(s,), and so (k) will equal
wi(hy).

Note that if for some k #i and h,, 7 (h;) #wi(h,), then h; cannot be reached unless some
player j # i deviates from o. Hence, for all i, s,, and k #i,

u(s;,m_;) = ”i(siﬂ’"—i =u;(5;, ;).
Moreover, since each }(h,) agrees with #(h,|o) at all information sets in H(o'), the same is true
of 7.

Finally, we check that 7' is a Nash equilibrium. Let 7 denote the behavior strategy profile
induced by o. Because ¢ is a unitary self-confirming equilibrium, for all 7,

ui(m, ) 2 u (i p;),
and because player i’s expected payoff to any strategy is the same under p, and 7’_;, this implies
ui(m, ) 2 u(F ).

Since 7} agrees with 7; at every information set with positive probability under = (and hence at
every information set with positive probability under 7') we conclude that

wi(mi, ;) 2w (). Q.E.D.
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