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Quantum computing offers the possibility of massively parallel computing that
scales to large problems in a way not possible for classical computers. It also may make
possible rapid and secure forms of communication that are not possible with classical
devices. As an offshoot of the quantum computing literature, a small set of papers has
started to examine quantum games. The question naturally arises: what if anything does
quantum game theory have for economists? This brief note attempt to summarize the
sometimes impenetrable notation used in quantum physics. I argue that quantum games
fall within the existing framework of correlated equilibrium, cheap-talk equilibrium and
mechanism design theory, where the correlation and/or communication devices are
limited in a way not terribly relevant to economic theory. The notation is taken from
Cleve et al [2004], and interpreted using the Wikipedia.

A quantum mechanical system has a state (¢/|, which is simply a k -dimensional
complex valued row vector of unit length. The notation |1)) refers to the conjugate of
(1|, that is, the transposed k -dimensional column vector consisting of complex
conjugates of (1|. Since the length of a complex vector is the square root of the inner
product of that vector with its conjugate, the condition that the state has unit length is
simply (¢|¢) =1. A complex kXxk matrix X is positive semi-definite if
(Y| X |¢) > 0 for all complex k -vectors (|. A measurement system consists of a finite
collection {X“} of k x k complex positive semi-definite matrices, where a € A, a finite
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where [ is the identity matrix. When the measurement system is applied to the state (1],
the probability that the measurement takes on the value a is imply (| X*|).

Quantum physicists also have their own notation for canonical bases of complex
k -space. Suppose the underlying classical state has two components each of which can
take on two values {0,1}. Then the quantum state has four dimensions, corresponding to
each of the four classical states {00,01,10,11} and reflecting the value of the first and
second component. Then the canonical basis of complex 4-space, which we would
usually write as {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)} would be written by a physicist
as {(00],(01],(10[,{11]}. Complex vectors are then written as linear combinations of
these basis vectors, so for example ({(00|+ (11|)/~2 = (1/+/2,0,0,1/~/2), which of
course has unit length.

Next we suppose that there are two players. These players have access to a kk,
dimensional state (¢’|. A measurement system for player 7 consists of a finite collection
{X{}, a€ A of k; xk complex positive semi-definite matrices. The Kronecker

product of two measurement matrices is the kjk, x kk, matrix
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which may be familiar to economists from seemingly unrelated regression theory where
Kronecker products frequently appear in covariance matrices. When both players apply
their measurements, and the state is (1|, the probability of the pair of measurements
(a,b) € A x A, is given by (|X{ ® X5 |¢). Since the probability of player 1’s
measurement depends on the measurement taken by player 2, this is referred to in
quantum mechanics as quantum entanglement. It should be emphasized that although this
is rarely explicitly stated in the quantum game literature, it is assumed that the underlying
state (1| is common knowledge among the players, although of course, the realized
value of measurements based on that state is not known.

We now consider a game in which the pure strategy spaces are A; for player ¢ —
the outcome of quantum mechanical measurement, in other words, will correspond to a
choice of strategy for that player. Payoffs are real valued ;(a;,a_;), where as usual a_;

refers to the strategy of the player other than player i. However, in a quantum game,



players play by choosing a measurement system from a feasible set of systems ;. The
system
I b=a

X! =
! 0 b=a

corresponds to the pure strategy a; this is ordinarily assumed to be in the feasible set.

More generally
X! = a(b)I

corresponds to the mixed strategy that plays b with probability «;(b). These also should
be feasible. But quantum games may allow other non-classical measurement systems as
well — and indeed, even if a player plays a “classical” pure or mixed strategy, an
opponent through quantum entanglement may be able to correlate play with that player.

At this point the literature on quantum games faces a modeling decision, although
they do not recognize it as such. In one model, players make their measurements, then
decide what to do based on the measurement. In this case, we may think of the result of
the measurement as a recommendation on how to play. We then define an equilibrium to
be a pair of measurement systems such that each player knowing her opponent’s
measurement system finds it optimal to follow the recommendation made by her own
system. In this case, it should be apparent that an equilibrium is a special case of a
correlated equilibrium — all that matters to player is the joint distribution of
recommendations over strategy profiles — that this is generated by a quantum mechanical
system is not relevant to incentives. This point was first made in Meyer [2004].

However, the quantum game literature has taken two different turns. One
possibility that is considered is that players have private information prior to submitting
their measurements. Consider, for example, the pure coordination game examined by
Cleve et al. In the variant described by Dahl and Landsburg [2005] Alice and Bob each
independently with 50-50 probability are asked either “Do you like cats?” or “Do you
like dogs?” If they agree they both get one, unless both are asked “Do you like cats?” in
which case they get one if they disagree. Otherwise they get 0. After receiving the
question, they then submit their measurements to the quantum device, get their
recommendation on whether to say “yes” or “no” and submit either answer they prefer to

receive their payoff. In any Nash, and moreover, in any correlated equilibrium, of the



game they can win at most 3% of the time. If they use a particular quantum device to
coordinate their actions, Cleve et al show that they win cos?(7 /8) > 3 /4 of the time. A
similar example was previously described by La Mura [2003]. The key point here is the
players are implicitly allowed to send messages (measurements) to a machine that then
gives them advice. This is not an example of a correlated equilibrium: it is an example of
a cheap-talk equilibrium. If we can design an arbitrary “cheap talk” device to which
players can submit messages and get advice, they can win all the time. Each simply
announces the question they were asked, and if they were both asked about cats, Alice
says “no” and Bob “yes” otherwise they both say “yes.” This is of course the basic point
of the cheap talk literature going back to the early work of Crawford and Sobel [1982]
and Farrell [1987]. This particular branch of the quantum tree has simply rediscovered
cheap talk.

These examples do, however, give an indication of just how complicated
quantum mechanics can be even in the simplest problem — the Dahl and Landsburg
[2005] version of the example asserts on page 1 that quantum probabilities violate the
ordinary laws of probability — something which the fact that ()| X“|¢) >0 and
¥, (| X*|¥) = 1 should persuade you is not true. They then continue on to analyze on
p. 4 the cats and dogs example — mixing the usual laws of probability with the supposed
quantum laws.

The La Mura [2003] example is instructive.’ In that example each player is one of
three types A,B and C with equal probability of 1/3". Each chooses one of three
measurements, x,v,z. Because of the quantum entanglement, if they choose the same
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measuring device, then the probabilities they are told to say “yes”, “no” are given by

“ yes” “no”
“ves' |0 12
“no’ |12 0

while if they choose different measuring devices the probabilities are

* I am grateful to Pierfrancesco La Mura for explaining this to me.



[13 y%”
“ves' | 3/8 1/8
“no’ | 1/8 3/8

“ no"

Of course, we can implement this scheme with a classical communications device that
receives the messages x,y,z from the players and replies by advising them according to
these probabilities. Note that there is no issue of “classical” versus “quantum” laws of
probability here.

The point that deserves some emphasis, however, is that not all communications
devices can be implemented by quantum correlating devices. In the La Mura example
suppose that type A chooses z, type B chooses y and type C chooses z. Then a player 1
with type A faces the following probabilities

A B C
“yes”’ “no” “yes” “no” “yes”’ “no”
“yes” 0 4/8 3/8 1/8 3/8 1/8
“no” 4/8 0 1/8 3/8 1/8 3/8

where opponents of each type have probability of 1/3". The goal of this game is to avoid
agreeing with the same type, and to agree with different types. This scheme accomplishes
that — if the advice is followed and the opponent is also type A the probability of
agreement is 0. On the other hand, if the opponent is type B or C the probability of
agreement is 3/8. But notice the following fact: given the message (“‘yes,” for example)
received by player 1, the conditional probability of each type of opponent remains 17344
In this sense no communication takes place. This is fundamental to quantum mechanics —
by simply entangling states, no communication in this sense can ever take place. That is,

based on quantum entanglement, a player’s measurement may not reveal anything about

* It is also the case that the conditional probability his opponent says “yes” remain 1/2, but this is less
fundamental in that a player’s signal may contain information about what signal his opponent received. For
example, it they are both restricted to use the same device, then each players signal reveals exactly what
signal his opponent received.




what measurement device the other player used.” It may, however, reveal information
about the signal received by the other player introducing a correlation, or may reveal
information about the joint distribution of the measurement device and the signal, as it
does in this example: physicists sometimes refer to this as “pseudo-communication.”
Note that quantum pseudo-communication may have advantages of security; or may be
available when other “true” communication devices are not, in which case the quantum
constraints become relevant.

There is second branch of quantum games, which does not consider private
information, but is focused instead on solving games with dominant strategies such as the
Prisoner’s Dilemma. Benjamin and Hayden [2001] is an example of such a model. Since
it is obvious that after you get your recommendation, regardless of what quantum
principles may be involved in making it, it is still best to follow your dominant strategy.
So they assume (implicitly) that following the recommendation of the device is not
optional, but is rather a binding commitment. The only way to make sense of this is to
assume that the results of player measurements do not go back to the players, but rather
go to a machine that then implements the decisions. But if we are going to build a
machine that takes input from players and makes choices on their behalf, we are by no
means limited to the simplistic machines considered in the quantum games literature.
Indeed, the problem of building machines to make choices based on player submissions is
exactly the problem considered in the mechanism design literature. So it should not be
surprising, for example, that it might be possible to get cooperation in a “quantum”
prisoner’s dilemma game. If we are allowed to build machines, a simple machine
consistent with players’ original strategy spaces is to add a single strategy “Z.” If a player
plays a strategy in the original space, then the machine implements that action for her. If
she chooses Z and her opponent chooses Z, then the machine assigns both to cooperate. If
she chooses Z and her opponents does not, then the machine assigns her to defect. It is
obvious that Z weakly dominates all other strategies in this mechanism.

While at the moment economists may have little to learn from quantum games,
there are legitimate issues that the literature may address in the future: for example,

quantum correlation devices may impose limitations on the feasible set of correlated

> This is known as the impossibility of Bell’s telephone — if it failed, then an entanglement could be used
for communication.



equilibria while offering levels of security not attainable by classical devices. Or it may
be that in modeling evolution at the molecular level, quantum devices play an important
correlating role.

For further reading on quantum games oriented towards economists and game

theorists, Campos [2005] has a nice exposition.

References

Benjamin, Simon C. and Patrick M. Hayden [2001], “Multi-player Quantum Games,”
http://arxiv.org/pdf/quant-ph/0404076.

Campos, Rodolfo G. [2005], “Quantum Games Are Not As Tough As They Look,”
UCLA mimeo.

Crawford, Vincent and Joel Sobel [1982], “Strategic Information Transmission,”
Econometrica.

Cleve, Richard, Peter Hoyer, Benjamin Toner and John Watrous [2004], “Consequences
and Limits of Non-local Strategies,” http://arxiv.org/pdf/quant-ph/0007038

Dahl, Gordon B. and Stephen E. Landsburg [2005], “Quantum Strategies in Non-
cooperative Games,” Rochester.

Farrell, Joseph [1987], “Cheap Talk, Coordination and Entry,” RAND Journal ,18: 34-39.

La Mura, Pierfrancesco [2003], “Correlated Equilibria of Classical Strategic
Games with Quantum Signals” arXiv:quant-ph/0309033 v1.

Meyer, David [2004], “Quantum communication in games,} in S. M. Barnett, E.
Andersson, J. Jeffers, P. Ohberg and O. Hirota, eds., Quantum Communication,
Measurement and Computing (Melville, NY: AIP 2004) 36-39.



