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Recent research indicates that there are robust examples of overlapping generations economies
in which there are indeterminate equilibria without fiat money and equilibria with more than
one dimension of indeterminacy. This paper presents simple examples of a stationary, pure
exchange overlapping generations economy with one good in each period and a representative
consumer, who lives for three periods, in each generation. These examples exhibit every possible
form of indeterminacy and instability. Furthermore, the parameters of the principal example
agree with empirical evidence. We use our examples as case studies for analyzing the problems
involved in computing the equilibria of such economies.

1. Introduction

This paper explores the implications of indeterminacy of equilibrium in
overlapping generations models for applied work, for example, the study of
the dynamics of fiscal policy. In particular, we attempt to answer three
related questions: Do examples of indeterminacy depend on implausible
parameter values? How can indeterminacy be diagnosed? How does indeter-
minacy manifest itself in truncated versions of infinite-horizon models?

That an overlapping generations economy might have a continuum of
equilibria is well known. When counting the equations and unknowns in his
equilibrium conditions, Samuelson (1958, p. 470) notes that ‘we never seem
to get enough equations: lengthening our time period turns out always to
add as many new unknowns as it supplies equations’. Unfortunately, most
discussions of indeterminacy of equilibrium have focused on a special model,
one with a single good in each period and consumers who live for only two
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periods. This model has special features: indeterminacy occurs only if there is
a nonzero amount of nominal debt, fiat money. Furthermore, indeterminacy
is one-dimensional in the sense that equilibria can be locally indexed by the
real value of fiat money.

To illustrate these points, let us consider a model in which there are two
generations alive in the first period, a generation that lives only in period 1
and holds an amount of fiat money, m, which may be positive, negative, or
zero, and a generation that lives in periods 1 and 2. The equilibrium
condition can be written

J1(p1,p2,m)=0. (1.1)

Here f, is the aggregate excess demand function of the two generations and
p; and p, are prices. In period ¢, t=2,3,..., there are two generations, one
that lives in periods t—1 and t and one that lives in periods ¢ and t+1. The
equilibrium condition can be written

S~ 15P1> P+ 1) =0. (1.2)

The excess demand functions in (1.1) and (1.2) are homogeneous of degree
zero in their arguments.

To see the possibility of indeterminacy, let us count equations and
unknowns. If we normalize prices by fixing p,, then (1.1) consists of one
equation and two unknowns, p, and m. After that, each condition adds one
equation and one unknown. There is, therefore, one degree of freedom: if we
fix m/p,, the real value of fiat money, then we use (1.1) to solve for p,.
Knowing p, and p,, we can use (1.2) to solve for p,, and so on. There are
two potential problems with this procedure for constructing equilibria: for
some values of p,_, and p,, there may be no positive value of p, ., that solves
(1.2), and for other values of p,_, and p,, there may be more than one value
of p,,, that solves (1.2). As we shall see, however, both of these problems can
be resolved by restricting attention to equilibrium price paths that start and
remain in a neighborhood of the stationary solution to (1.2).

This model has the special feature that fixing the initial real level of fiat
money reduces the system to one with no degrees of freedom. This is the
intuition behind the results of Gale (1973), who shows that in an economy
with a single, two-period-lived consumer in each generation and a single
good in each period, indeterminacy is one-dimensional and depends on the
existence of fiat money. Balasko and Shell (1981) extend these results to an
economy in which there are many goods in each period but a single, two-
period-lived consumer with a Cobb-Douglas utility function in each genera-
tion [see also Samuelson (1960)]. Geanakoplos and Polemarchakis (1984)
and Kehoe and Levine (1984a) have extended these results to an economy
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with a single, two-period-lived consumer with intertemporally separable
preferences in each generation. Kehoe, Levine, Mas-Colell and Woodford
(1986) have extended them to a general economy with gross substitutes
demands. Calvo (1978) has also constructed examples in which there is a
one-dimensional indeterminacy indexed by the value of an asset like land or
capital.

In contrast, Kehoe and Levine (1984b, 1985) have shown that such strong
results do not obtain without strong assumptions. They study a stationary
pure exchange economy with n goods in each period and general demand
functions. They prove that with a nonzero stock of nominal debt there is,
potentially, an n-dimensional indeterminacy, while with no nominal debt
there is potentially an n— I-dimensional indeterminacy. In particular, indeter-
minacy does not depend on the existence of fiat money or other assets.

The intuition behind the results in the more general model can be seen by
reinterpreting equilibrium conditions (1.1) and (1.2). In a model with n goods
the price p, and excess demands fy(p;,p,,m) and f(p,_,p.,,Pi+1) are now
n-dimensional vectors. Counting equations and unknowns, we see that (1.1)
is a system of n equations in 2n+1 unknowns. For each ¢, (1.2) adds n
unknowns and n equations. Once we have imposed a price normalization, we
are left with a system with n degrees of freedom. If we set m=0, there are
only n—1 degrees of freedom left. The argument in Kehoe and Levine
(1984b) depends on a result due to Debreu (1974) that says that the excess
demand function of a generation is arbitrary except for continuity, homo-
geneity, Walras’s law, and a boundary condition: for any excess demand
function that satisfies these properties there exists a generation of 2n utility-
maximizing consumers who generate it. This leaves open the question of how
far we have to go to construct robust examples in which there are
indeterminate equilibria without fiat money or equilibria with more than one
dimension of indeterminacy. Do such examples depend on implausible
parameter values?

In this paper we present examples in which the only departure from the
economy considered by Gale (1973) is that the single consumer in each
generation lives three, rather than two, periods. In these examples the
elasticity of intertemporal substitution in consumption over time is 0.25. This
accords well with the empirical evidence presented in Mankiw, Rotemberg
and Summers (1985) and Auerbach and Kotlikoff (1987), for example. The
representative consumer discounts future consumption by about 3.5 percent
per year. In addition, individual endowments exhibit a substantial hump in
the middle period. In this economy there is both a one-dimensional family of
efficient equilibria without valued fiat money that converge to an efficient
steady state and a two-dimensional family of efficient equilibria with valued
fiat money that also converge to an efficient steady state. With a higher
endowment hump in the middle period, we find a two-dimensional family of
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inefficient equilibria, all converging to an inefficient steady state in which
money has no value. (In all of these cases Pareto efficiency is associated with
interest rates that are asymptotically negative.)

An important property of an intertemporal elasticity of substitution of 0.25
is that it allows goods in different periods to be gross complements at some
prices. In situations where all goods are gross substitutes, Kehoe, Levine,
Mas-Colell and Woodford (1986) have shown that indeterminacy of the type
discussed in this paper is impossible. To guarantee gross substitutability,
however, the elasticity of substitution must be greater than or equal to 1.0,
which is an implausibly high value.

Indeterminacy poses problems for the researcher interested in doing
comparative statics analysis: the specification of the environment does not
suffice to determine the equilibrium even locally near a historically given
equilibrium. The examples in this paper serve as case studies of how to
compute the equilibria of an intertemporal general equilibrium model and
how to diagnose indeterminacy. An economist working with this type of
model would, in theory, need to solve a system with an infinite number of
equations and with an infinite number of unknowns. Except for very special
cases this is an impossible task.

In practice, such economists face three alternatives:

First, they could solve for a steady state, a solution to the equilibrium
conditions that ignores any initial conditions and remains constant, or grows
proportionally, over time. [This is the approach taken by Diamond (1965)
and Feldstein (1977), for example.] In a pure exchange economy with two-
period-lived consumers and n goods, for example, a steady state is a price
vector p and an inflation factor § such that

f(p, Bp, B*p)=0. (1.3)

One advantage of this alternative is, as Kehoe and Levine (1984b) demon-
strate, that steady states of such models are, in general, determinate. They are
also relatively easy to compute. The disadvantage is that it ignores initial
conditions and the transition from one steady state to another.

Second, the economists could linearize the equilibrium conditions around a
steady state (or cycle) and then solve the linearized version of the model.
Thus, they could exactly solve an approximate version of the model. [This is
the approach taken by Laitner (1984), for example.] Because of homogeneity,
we can linearize the equilibrium condition (1.2) as

Difp-1+Dyfp+D3fp+1=0. (1.4)

Here each nxn matrix of partial derivatives D;f is evaluated at the steady
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state (p, Bp, B*p). Rewriting this linearized equilibrium condition as a first-
order difference equation, we obtain:

P (_ 0 I Pi-1 . 1.5
Lo otmg ][] 09

Indeterminacy of the linearized system manifests itself as too many stable
eigenvalues of the 2n x 2n matrix in (1.5). The advantage of this alternative is
that indeterminacy of the linearized system is easy to diagnose and equilibria
are easy to compute: both are simple matters of linear algebra. Furthermore,
the local stable manifold theorem says that the qualitative properties of the
nonlinear system near the steady state are almost always the same as those
of the linearized system. In particular, indeterminacy in one system almost
always corresponds to indeterminacy in the other. (Violations of the non-
degeneracy conditions implicitly assumed in the ‘almost always’ caution can,
as we shall see, be ignored in practice; in any case such violations would be
obvious in the linearization itself.) The disadvantage of this alternative is that
equilibria of the linearized system may be very poor approximations to
equilibria of the nonlinear system far from the steady state.

Third, the economists could truncate the model after a long but finite
horizon. They would then be faced with a system with a large but finite
number of equations. To solve this system, they would need to impose
terminal conditions on some of the prices, for example, by fixing them at
their steady-state values. Thus, the economists could find an approximate
solution to the nonlinear model. [This is the approach taken by Auerbach
and Kotlikoff (1987), for example.] Truncating the model at period T, we
obtain, for example,

f(pr-1,pr:|pr]|BP) =0. (1.6)

The advantage of this alternative is that the equilibria that it computes are
good approximations to the equilibria of the infinite-horizon model, at least
if the truncation date T is large enough. One disadvantage of this alternative
is that it is relatively more difficult to compute approximate equilibria using
this approach than it is using the other two. A more serious disadvantage is
that it is much more difficult to diagnose indeterminacy, or even lack of
convergence to the steady state, in the infinite-horizon, nonlinear model
using this approach than it is using the linearized system.

These three approaches to computing equilibria are, perhaps, best viewed
not as alternatives, but as complementary research tools. To explore their
relative advantages and disadvantages, we present a series of simple and
highly stylized examples. The central example has a very special feature that
makes it ideal for comparing alternatives for computing equilibria: because it
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exhibits the maximum level of indeterminacy, exact equilibria of the infinite-
horizon, nonlinear model can be computed. Initial prices can be chosen
subject only to the constraint that they satisfy the equilibrium conditions in
the initial two periods. Subsequent prices can be computed simply by
working the conditions corresponding to (1.2) forward. Since all price paths
close enough to the steady state converge to the steady state, we do not need
to worry about terminal conditions.

Results on indeterminacy in models with infinite time horizons are
primarily interesting insofar as they provide insights into economies with
long but finite time horizons. Our examples illustrate how the indeterminacy
of equilibrium in the infinite model corresponds to acute sensitivity of
equilibrium to terminal conditions in the corresponding finite economy.
Indeed, seemingly trivial variations in the characteristics of people who
would not be born for 10 centuries can cause current annual interest rates to
jump from —7 percent to nearly 5 percent. This should serve as a warning to
applied economists who use these types of models to study public finance
issues.

Our examples, although simple and stylized, are intended to illustrate
alternative possibilities for indeterminacy in more complex and detailed
models. These possibilities certainly do not disappear as models become
more complex: Muller and Woodford (1988), for example, consider econo-
mies with production, infinitely lived assets, and mixtures of finitely lived and
infinitely lived consumers. They find that, although the introduction of
infinitely lived consumers or assets may rule out inefficient equilibria and
equilibria with fiat money, it does not rule out the possibility of indeter-
minacy, except in extreme cases. Woodford (1986a) has further argued that
indeterminacy can occur in models with a finite number of infinitely lived
consumers who face borrowing constraints. Even the positive implications of
gross substitutability in pure exchange economies disappear when production
is introduced: Calvo (1978) presents a simple example of an overlapping
generations economy with production in which the representative consumer
in each generation can have gross substitutes excess demand but in which
there can be a continuum of equilibria even though there is no fiat money.
Furthermore, Spear (1988) provides an example of an economy with a single
infinitely lived consumer in which there is a robust continuum of equilibria
because of an externality. Kehoe, Levine and Romer (1989) provide a similar
example in which indeterminacy is due to distortionary taxes.

As well as presenting practical problems to researchers interested in
performing comparative statics experiments, the possibility of indeterminacy
poses important conceptual problems. Most importantly, it undermines the
concept of perfect foresight equilibrium. The agents in the model, like the
modeler, cannot use the model itself to make determinate predictions about
the future. Closely related to this is the possibility of sunspot equilibria, i.e.



T.J. Kehoe and D.K. Levine, The economics of indeterminacy 225

equilibria that depend on otherwise extraneous random processes: if the
model itself does not pin down agents’ expectations about the future, room is
left open for random coordinating devices. See Woodford (1986b), Laitner
(1988), and Peck (1988) for discussions of the relationship between indetermi-
nacy and sunspot equilibria.

2. The model

Consider a stationary economy in which the single consumer born in
period t, t=1,2,..., lives for three periods and has the utility function

3

”(CxaCZaC3)=_Z ai_l(c?—l)/b, (2.1

i=1

where a is the discount factor, b satisfies b< 1, and ¢; is the consumption in
period t+i— 1. This is, of course, the constant elasticity of substitution utility
function with elasticity of substitution 5=1/(1—b5b). The consumer faces the
budget constraint

3 3
z Pivi—16i= Z Di+vi—1Wis (2.2)
i=1 i

i=1

where (w,,w,,w;) is the endowment stream. The corresponding excess
demand functions are denoted x;(p,, p,+1,P;+2), j=1,2,3. These functions are
continuously differentiable for all strictly positive prices, are homogeneous of
degree zero, and obey Walras’s law:

3
pr+i71xi(pnpt+1’pt+2)=0‘ (23)
=1

i

In addition to these consumers, there are two others, an old consumer who
lives only in period 2 and a middle-aged consumer who lives in periods 1
and 2. The old consumer, consumer — 1, derives utility only from consump-
tion of the single good in the first period, so we need not specify a utility
function. The consumer has m_, units of fiat money, which may be positive,
negative, or zero and an excess demand function of

xa_l(Pl,m—1):m—1/P1- (2.4)

The middle-aged consumer, consumer 0, has the utility function
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@~ }(cb—1)/b, (2.5)

™M

uglcy, c3)= .

i=2

an endowment stream (w3, w3) of goods, an endowment m, of fiat money,
and excess demand functions of xJ(p,, p2,me), j=1,2.
The equilibrium conditions for this economy are

x3 M(p1>m_ 1)+ X3(P1> P2, Mo) +X4(Py, P2, P3) =0, (2.6)
x3(P1»P2,Mo) + X2(P15 P2, P3) + X1(P2, P3, Pa) =0, 2.7
X3(Pi— 2P 15P) +X2(Py— 1, Pes P+ 1)

+x1(PoPis1-Pi+2)=0, t=3,4,... (2.8)

Let m=m_,+m,. A straightforward calculation using the equilibrium con-
ditions and Walras’s law shows that

m= —ptxl(pnpt-Flapt+2)—pt+1x2(pt9pt+1apt+2)
=P+ 1X1(Pr4 15 Pet 20 Pe v 3)s (29)

for all t; just as in the two-period-lived model, the amount of fiat money
stays constant over time.

To see the possibility of indeterminacy in this economy, let us count
equations and unknowns. If we fix m_, and m,, then the first two
equilibrium conditions consist of two equations in the four unknowns p;, p,,
ps, and p,. After that, each condition adds one equation and one unknown.
There are, therefore, two degrees of freedom. In the case where m_; =m,=0,
however, the equilibrium conditions are homogeneous in prices, and so we
can impose a price normalization to reduce this to one degree of freedom. In
the case where m_, = —my#0 there are still two degrees of freedom. We
shall ignore this case, however, and mention it only to warn the reader that
distributional effects as well as fiat money can be responsible for extra
dimensions of indeterminacy.

One problem with simply counting equations and unknowns is that we do
not know whether we can construct a price path for all values of p,, p,, ps,
and p, that satisfy the equilibrium conditions in the first two periods. To
avoid this problem, Kehoe and Levine (1984b, 1985) focus attention on price
paths that converge to a steady state. Such paths are the easiest to study.
Price paths that do not converge to a steady state may display very complex
periodic or even chaotic behavior [see, for example, Benhabib and Day
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(1982)]. It may be difficult to distinguish them from price sequences that
satisfy the equilibrium conditions for a long time, but eventually lead to
prices that are negative, where excess demands explode, or to prices where,
for some other reason, continuation of the sequence is impossible. We could
argue, however, that the computational difficulties associated with paths that
do not converge to steady states make them implausible as perfect foresight
equilibria.

Another problem with counting equations and unknowns is that, given
values of p,_,, p,—1, P.» and p,, there may be more than one value of p, .,
that satisfies (2.8). To avoid this problem, Kehoe and Levine (1984b, 1985)
consider only price paths that remain in some open neighborhood of a
steady state where the derivative of x, with respect to its third argument,
Dyx,(1, B, B?) is nonzero. Kehoe and Levine (1984b) prove that Dsx,(1, 5, 5°)
is, in fact, nonzero at almost every steady state f.

A steady state of this economy is an inflation factor >0 such that p,=f'
satisfies the equilibrium conditions from the second period onwards. Here
r=1/8—1 is the steady-state interest rate. Just as in the case with two-
period-lived consumers, there are two types of steady states, real steady states
in which f#1 and m=0 and nominal steady states in which f=1 and m#0.
Kehoe and Levine (1984b) prove that =1 and m=0 occur at the same
steady state only for a closed, nowhere dense set of economies in the
appropriate topology. They also prove that generically there exist an odd
number of steady states of each type. (With only one good in each period
this result has no bite for nominal steady states since f=1 is the unique
nominal steady state.)

3. The linearized model

To study the behavior of equilibrium price paths near a steady state, we
can linearize the equilibrium conditions:

(Dyx3 ' +D,x3+ D1x,)py +(Dyx3+ Dyx,)p;, +D3xps
=D;x; 4+ D X3+ D, x5 — x5 ' —x3—x4, (3.1
(Dyx3+Dyx5)py +(D3x3+ DXy + B~ D1x1)pa +(D3xy + B ' Dyxy)ps
+B7'D3x,pa=D x5+ Dx3f —x§— X2 — Xy, (3.2)
Dyx3py 2 +(Dyx3+ B 1D x3)pi— 1 +(D3x3+ 7 Daxa + 72Dy x4)p,

+(B7'D3x,+ B2 D5x)Prs1 +B72D3x1p 2 =0, t=3,4,... (33)
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Here all functions and derivatives are evaluated at (1,8, 8%) and factors like
B! show up because of homogeneity: since x; is homogeneous of degree
zero, for example, D;x, is homogeneous of degree minus one and
Dlxl(ﬁ,ﬁ2ﬁ3)=[3_1D1x1(1,B,BZ).

The linearized versions of the two initial conditions (3.1) and (3.2)
generically determine a two-dimensional affine set in R*. We want to
determine the dimension of the intersection of this set with the subspace of
vectors (py, P2 D3, Pa) €R* that lead to convergence to the steady state f
when used as starting values for the difference eq. (3.3):

lim (pt’ Dr+1sDPe+2s pt+3)/pt=(1’ ﬂ9 BZ’ .83) (34)

t— o0

The local stable manifold theorem of dynamical systems theory, as presented,
for example, by Irwin (1980), says that, in general, what is true of the
linearized system is true of the nonlinear system in some open neighborhood
of the steady state. In particular, the intersection of the vectors that satisfy
(3.1) and (3.2) with the stable subspace of (3.3) has the same dimension as the
manifold of equilibria of the original system (2.6)-(2.8). In fact, this intersec-
tion is the best affine approximation to the equilibrium manifold at the
steady state.

To determine the dimension of this stable subspace, we examine the roots
of the polynomial

Dyx3+(Dyx3+ B Dyx3)A+(D3x3+ B Dyx, +B72Dyx,)A°
+(B 'Dayxs+ B 2D,x,) A3+ B72D3x,A*=0. (3.5)

These roots can also be viewed as eigenvalues of the 4 x4 matrix formed
when we convert (3.3) into a first-order difference equation in four variables.
Since x,, x,, and x5 are homogeneous of degree zero, A=f is a root, and
since they satisfy Walras’s law, A=1 is a root. We need to divide by f every
period to make (1, 8, 5% %) a fixed point of the linear system. Consequently,
the stability condition is |2|<B. Let n* be the number of stable roots; n° is
equal to 0, 1, 2, or 3. The stable subspace has dimension n°+ 1. The extra
dimension shows up because of homogeneity and corresponds to the root f:
if (p1,p2,P3,Ps) leads to convergence to the steady state, then so does
(8p,,0p,,0p5,0p,). The intersection of this subspace with the set that satisfies
(3.1) and (3.2) generically has dimension (n°+1)+2—4=n°—1, which can be
negative, 0, 1, or 2. If it is negative, then in general no solution exists that
converges to the steady state; that is, the steady state is unstable. If it is O,
then the solutions are locally unique; that is, equilibria are determinate.

In the case where m_,=my=0, we can reduce the dimension by only
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considering the values of (py,p;.P3,ps) for which pix;(p(,p,,p3)+
P2X5(P1, P2, P3) + P2x1(P2, P3, Ps) =0. Kehoe and Levine (1984b, 1985) argue
that in this case the root A=1 is irrelevant and that the dimension of the
relevant intersection is 7°— 1, where ° is this number of roots less than f in
modulus excluding (possibly) A=1. Consequently, this dimension can be
negative, 0, or 1. Again, if it is negative, then no solution exists in general.

The root A=1 is crucial at real steady states if m_, +my#0, however. If
B> 1, then this is a stable root, and paths with nominal debt can converge to
the real steady state because inflation causes the real value of this debt to
approach zero. In contrast, if f< 1, then this is an unstable root, and no path
with nominal debt can converge because deflation causes the real value of
this debt to approach infinity.

There are three possible problems involved in using the linearized version
of the model.

First, our use of the phrase ‘in general’ indicates that we require three
regularity conditions to be satisfied: (1) D3x,(1,5, B?) cannot equal zero at
the steady state f; (2) the characteristic polynomial (3.5) cannot have any
root, except the one implied by homogeneity, with modulus f; and (3) the
intersection of the affine set of initial conditions that satisfy the equilibrium
conditions in the first two periods, (3.1) and (3.2), with the stable subspace of
the linearized system, (3.3), must have the dimension suggested by counting
equations and unknowns. If the regularity conditions are violated, then we
can no longer claim that what is true of the linearized system is true of the
nonlinear system. Kehoe and Levine (1984b) prove the regularity conditions
are generic, that is, satisfied by almost all economies in a precise mathe-
matical sense.

Second, the local manifold thecorem says that what is true of the linearized
system is true of the nonlinear system only in an open neighborhood of the
steady state. It does not tell us how big this open neighborhood is in
practice. On one hand, there may be no equilibrium price paths with
(py,P2,P3,Ps) outside this neighborhood. On the other, a price path may
leave this neighborhood of the steady state but may nevertheless generate an
equilibrium price path.

Third, although the behavior of the linearized system may provide a good
guide to the qualitative behavior of the nonlinear system, it may be
significantly different quantitatively. In other words, the neighborhood of the
steady state in which a solution to the linearized version of the model can be
used as a good approximation to the equilibrium may be even smaller than
the neighborhood in which the local stable manifold theorem applies.

In practice, the first of these possible problems can be ignored. No
computer program, for example, would ever find more than one root of (3.5)
with modulus exactly equal to B. (Some numerical difficulties might arise,
however, in situations where another root has modulus very close to ) In
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Table 1
Steady state
Initial money p<1 p=1 p>1
m=0 Unstable, 0, 1 Unstable Unstable, 0,1
m#0 Unstable Unstable, 0,1,2 0,1,2
Table 2
Steady state
Initial money p<1 p=1 p>1
m=0 0 Unstable 0
m#0 Unstable 0,1 0,1

any case, it is trivial to verify that the examples presented in the next section
satisfy the three regularity conditions. In general, it is difficult to assess the
importance of the second and third possible problems in practice. Since the
first example presented in the next section has the special feature that we can
calculate its equilibria exactly, however, we can calculate the size of open
neighborhoods in which the nonlinear system behaves like the linearized
system and compare solutions of the linearized system with exact solutions
to the nonlinear system.

4. Examples

In this section we present simple examples to illustrate the different
possibilities for indeterminacy of equilibria. Let us begin by summarizing the
possibilities. We distinguish among equilibria according to whether the
steady states they converge to satisfy f<1, f=1, or f>1. This distinction
has a close connection with Pareto efficiency: if §<1, then the interest rate
r,=p,/pi+1— 1 is asymptotically non-negative and the equilibrium is efficient.
If f>1, however, then the interest rate is asymptotically negative and the
equilibrium is inefficient. See Balasko and Shell (1980) and Burke (1987) for
discussions of this familiar efficiency criterion in overlapping generations
economies. Table 1 illustrates the various possibilities for dimensions of
indeterminacy. In contrast, table 2 illustrates the possibilities for the model
with two-period-lived consumers. In our examples we focus on the novel
possibilities in the three-period-lived model, in particular, the possibility of
indeterminacy even when m=0.

Consider first an economy in which a=0.5, b=—3, and (wy,w,,w;3)=
(3,12,1). To interpret these parameters, think of each period as being 20
years in length. Since 0.5=(0.96594)%°, the representative consumer in this
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Table 3
Steady Other
states  f§ roots
1 0.17563 1 0.00130 0.57803
2 0.79247 1 032315+ 0.50807i
3 1 0.79000 040969+ 0.69917i
4 44.63396 1 1.56835—144.10262

economy has a discount rate of roughly 3.5 percent per year and an
intertemporal elasticity of substitution of 1/(1+3)=0.25, which is the value
chosen by Auerbach and Kotlikoff (1987). The consumer also has a humped
life-cycle earnings profile. Although this example is fanciful, the parameters
chosen are the sorts of numbers that would be calibrated from empirical
evidence.

This economy has one nominal and three steady states. To determine the
roots of the fourth-order polynomial (3.5) at each steady state, we start by
evaluating the excess demand function (2.3) at (p,p,+1,P+2)=(1 5, 5°). At
the steady state where =1,

Dyx; D,x; Dsx;| [—224080 3.15531 —0.91451
Dix, D,x, Dix,|=|—056420 133320 —0.76900|. (4.1)
Dix; Dyx3 Dixs| |—047443 223114 —1.75671

Notice that, as we expected, D3x,; 0. [Notice too that, since this matrix has
some negative off-diagonal elements, (x,,X,,x3;) violates gross substitut-
ability.] The polynomial that we are interested in is

—0.47443 + 1666944 — 2.6643142 +2.386314°> —0.914514* =0. (4.2)

One of the roots is, of course, A=1. The other three are 0.79000, 0.40969 +
0.69917i, and 0.40969 —0.69917i, as can easily be verified.

The roots at all four steady states are listed in table 3. The modulus of the
pair of complex conjugates at the steady states where f=0.79247 is 0.60213;
where f=1 it is 0.81036. Notice that, as we expected, no steady state has
another root with modulus equal to §.

To construct an example of a continuum of Pareto-efficient equilibria
without valued fiat money that converge to a common efficient steady state,
we focus our attention on the steady state where §=0.79247. Let m_; =my=
0 and let w=8.26762 and wl=1, so that the initial middle-aged generation
has a smaller life-cycle hump than subsequent generations. It can be checked
that (p,, P2, P3, Pa) =(1,0.79247,(0.79247)%,(0.79247)%) satisfies the conditions
for equilibrium in the first two periods. Since §=0.79247 is a steady state,
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this is a legitimate equilibrium price path. Our earlier arguments imply that
this is only one of a continuum.

This example has the very special feature that this steady state has the
maximum possible dimension of indeterminacy. We can therefore choose any
starting values for prices close enough to the steady state and use the
equilibrium conditions to solve for an exact equilibrium of the nonlinear
model. Since m_, =m,=0, the excess demands of generations —1 and 0 are
homogeneous of degree zero. We can choose p,/p, =0.79247 + ¢ for any small
&, positive or negative, and use the equilibrium conditions (2.6) and (2.7) to
solve for p;/p, and p,/p;. Using the equilibrium condition (2.8), we can solve
for an infinite price sequence. This price sequence must converge to one
where p,,;/p,=0.79247 since the modulus of the root governing stability is
less than 0.79247. The root i=1 is, as we have explained, irrelevant since
m=0 everywhere along this price path.

In fact, ¢ need not be very small: every p,/p, in the interval 0.42075<
p,/p; <14.16353 determines a distinct equilibrium that converges to the
steady state f=0.79247. In other words, the neighborhood of the steady state
in which the local stable manifold theorem guarantees that the behavior of
the linear system is a good guide to the qualitative behavior of the nonlinear
system is very large in this example. Fig. 1 illustrates the range of
possibilities; to keep the figure manageable a logarithmic scale is used. Notice
that p,/p, =0.42075 determines an equilibrium that converges to the steady
state where f=0.17562. Otherwise, all values of p,/p; outside this interval
determine paths that eventually lead to a negative price.

Fig. 2 illustrates three typical equilibria of our numerical example. From
an economic perspective, these different equilibria exhibit a wide range of
behavior. Since each period is about 20 years long, an intertemporal price
ratio of p,,,/p, implies an annual interest rate of roughly (p,,/p,)”"*°—1.
Equilibrium A has an annual interest rate of around —10.4 percent
(p,+1/p,=9.00) for 20 years, which gradually increases to 7.4 percent
(p,+1/p,=0.24) over the following 80 years. The interest rate then falls
gradually back to the steady-state level of 1.2 percent. In contrast, equili-
brium B has an interest rate of around 2.6 percent (p, ;. /p,=0.60) for around
40 years. Over the next 40 years this falls gradually to 0.4 percent
(p,+1/p.=0.93), then overshoots again to 1.5 percent (p,.,/p,=0.75) before
settling near the steady state. The point to emphasize is that in the
foreseeable future one equilibrium has an interest rate of —10.4 percent,
while the other has an interest rate of 2.6 percent. This is true even though
eventually these two equilibria converge to the same steady-state interest rate
of 1.2 percent.

How good an approximation to the exact equilibria in fig. 2 is provided by
their linear approximations? Fig. 3 shows each of these equilibria along with
the path followed by its linear approximation. Notice that the approxi-
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mation becomes better the closer the path starts to the steady state. Fig. 3A
shows that when p,/p,=10.00, which is grossly different from the steady-
state value of 0.79, the actual equilibrium is tracked relatively poorly by the
linear approximation. The approximation indicates p3/p,~1.77, while in fact
p3/p;=8.95. As a result of this gross error the linear approximation is
thrown out of phase with the actual equilibrium. Fig. 3B shows that in the
intermediate case when p,/p; =0.60 there is no phase error in the approxi-
mation although the discrepancy between the approximation p,/p;~ 1.08 and
the actual value p,/p;=0.93 is substantial in economic terms. Fig. 3C shows
that when p,/p; =0.85, which is still substantially above the steady-state
price ratio of 0.79, the approximation error is nevertheless negligible. In all
three cases the approximation has the same qualitative features as the actual
equilibrium.

To construct an example of a two-dimensional continuum of Pareto-
efficient equilibria with valued fiat money that converge to the same efficient
steady state, let us consider the case where m_;= —0.29215 and
my=0.45295, so that the initial old people are in debt to the middie-aged.
Here it can be checked that (p,,p,, ps, pa)=(1,1,1,1) satisfies (2.6) and (2.7).
In this case the excess demands of generations —1 and 0O are not homo-
geneous and we are not permitted a price normalization: money itself serves
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as numeraire. We can now choose p;=1+¢, and p,=1+¢, for ar._ ¢; and ¢,
small enough and use (2.8) to solve for an equilibrium price sequence that
converges to one where p,,,/p,=1.

To see that the equilibria in the example above are Pareto efficient,
observe that those converging to the steady state where f=0.79247 all assign
finite value to the aggregate endowment, and so the standard proof of the
first welfare theorem due to Debreu (1954) applies. Those that converge to
the steady state where =1 satisfy the more general conditions for efficiency
developed by Balasko and Shell (1980) and Burke (1987).

The relative price indeterminacy exhibited in the monetary case does not
depend on one of the consumers coming into the first year with negative fiat
money. An alternative example has m_, =0, my;=0.16080, and the hump for
initial middle-aged people increased so that w9=8.55977 and w}=1. Then
(P12, D3, P4) =(1,1,1,1) satisfies the equilibrium conditions in the first two
periods. Again there is a two-dimensional indeterminacy. [Setting
m_,;=my=0 does not, however, result in equilibrium conditions that are
satisfied by p,=(0.79247)' 1]

Notice that our example also has steady states of the more familiar sort:
any equilibrium that converges to the steady state where B=0.17563 is
determinate. Any equilibrium that converges to f=44.63396 and has no fiat
money is also determinate. There is a one-dimensional manifold of paths that
converge to this steady state if there is fiat money, however.

Before presenting our next example, let us digress briefly to consider the
possibility that instead of indeterminacy, there is instability: a steady state
may not be approached at all by equilibria that start nearby. To illustrate
this, consider the previous economy running backwards in time. Con-
sequently, a=2 (the reciprocal of 0.5) and (w,,w,,w;)=(1,12,3) [rather than
(3,12, 1)]. Of course, b= —3. (The reversing of time in this economy is not
meant to have any economic meaning; it simply provides us with an example
with quantitative features that can easily be derived from those of the
previous example. Other examples with more realistic parameters but the
same qualitative features as this example are easy to construct) This
economy also has four steady states with f’s and other roots that are
reciprocals of those given above. Here the steady state where f=1 is
unstable: there are no equilibria that converge to it unless, by pure chance,
(1,1,1,1) satisfies the equilibrium conditions in the first two periods. The
steady state where f=1.26188=(0.79247) ! is also unstable for price paths
with no fiat money. There are, however, locally unique equilibria with
nonzero fiat money that converge to this steady state. Notice that this
economy not only exhibits instability at the real steady state where
f=126188 but also at the nominal steady state where f=1. This also
follows by inverting the moduli of the eigenvalues.

Turning to the final example, we consider the possibility of a two-
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Table 4
Steady Other
states roots
1 0.07204 1 0.01617 0.55359
2 1 1.15172 024628+  0.69144i
3 1.15697 1 029816+  0.81591i
4 72.70100 1 1.761675 — 183.42115

dimensional indeterminacy near an inefficient real steady state, where > 1.
Suppose that a=0.5 and b= —3 as previously, but that (wy,w,,w3)=(3,15,1)
rather than (3,12,1). Suppose, in other words, that the life-cycle hump is a
little higher. This economy has four steady states with f’s and other roots as
listed in table 4. The modulus of the pair of complex conjugates at the steady
states where f=1 is 0.7399; where f=1.15697 it is 0.86862.

The interesting steady state is f=1.15697. There is a one-dimensional
manifold of equilibria that converge to this steady state if there is no fiat
money. If we allow the possibility that fiat money has value, however, then
there is actually a two-dimensional manifold of equilibria.

An essential feature of these above examples is that they are robust: we
can perturb slightly the parameters, including the functional forms, of
demand by any or all consumers (including the initial old) and still have an
economy with equilibria that have the same qualitative features. Indeed, we
have chosen initial old consumers so that the steady-state prices satisfy the
equilibrium conditions in the first two periods only to make it easy to verify
that there are prices that satisfy these equilibrium conditions and also
converge to the steady state.

Indeterminacy of the interest rate in a three-period-lived model may also
be interpreted as indeterminacy of relative prices in a two-consumer, two-
good, two-period-lived model. Indeed, Balasko, Cass and Shell (1980) show
that the former is a special case of the latter. Suppose that consumers h=1,2
in generation t solve the utility maximization problem

2 2
max Y, ) afcl — /7,

j=1i=1

s.t.

2 2 2 2

Z Z Pi+j— 1€ = Z Z pit+j—1w?ja (4.3)
j=t1i=1 j=ti=1

where, for example, ¢;; is the consumption of good i in period ¢+j—1. If we



238 T.J. Kehoe and D.K. Levine, The economics of indeterminacy

set y,=7,=b, set al,=a, =1, a}; =0, =a, af,=0d,=a% and of, =0}, =0,
and similarly set w, then this model is formally the same as the three-
period-lived model that we have considered. In this interpretation the
indeterminacy of the initial interest rate becomes indeterminacy of the initial
relative prices of the two goods. The main reason for using the three-period-
lived model for examples is to keep the specification as simple as possible:
while the two-period-lived model needs eighteen parameters to specify it, of
which fifteen are not subject to normalization, our simple three-period-lived
model needs only five, of which four are not subject to normalization. It is
still the case, however, that any small perturbation in the parameters of the
two-period-lived model results in an economy with equilibria that have the
same qualitative features as do the examples that we have presented.

5. The truncated model

There is a close relationship between models with infinite time horizons
and models with long, but finite, time horizons. On one hand, models with
infinite horizons are primarily interesting insofar as they provide insights into
the properties of finite-horizon models. On the other hand, to approximate
the equilibria of an infinite-horizon model on a computer we would have to
truncate the model after a finite number of periods. '

The example with the equilibria we have calculated in the previous section
has, as we have observed, the maximum possible dimension of indeterminacy.
We can, therefore, calculate equilibria simply by choosing arbitrary values
for initial prices (close enough to the steady state) and then solve the
equilibrium conditions forward to find an exact equilibrium. Suppose,
however, that we had a model with indeterminate equilibria but with less
than the maximum possible dimension of indeterminacy. The values for
initial prices would have to be chosen to lie in some lower dimensional
manifold. Although we know that the best linear approximation to this
stable manifold is the stable subspace of the linearized system, calculating
points on this manifold exactly is, except in very special cases, an impossible
task. We would therefore need to truncate the model and calculate approxi-
mate equilibria.

One way to truncate the model at period T would be to fix the
expectations of what prices would be in periods T+1 and T+2. We could,
for example, require that pr,,=pBpr.,;=p>pr in the terminal equilibrium
conditions:

X3(Pr-3 P12 Pr-1)  X2(Pr— 2. P1- 1>, P1) + X1(Pr -1, P1s PT+1) =0, (5.1)

X3(Pr-2,P1— 1, P7) + X2(Pr— 1, P P14 1)+ X1(PT: P14 15 P+ 2) =0 (5.2)
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[See Auerbach and Kotlikoff (1987) for an example of this approach.]
Another, sometimes equivalent, way to truncate the model would be to

specify terminal young generations T—1 and T analogous to the initial old

generations — 1 and 0. The terminal equilibrium conditions then become

x3(PT—3,PT~2,PTA1)+x2(PT~z,PT—1,PT)+X1Tvl(PT—1,PT, my_1)=0,
(5.3)

x3(Pr-2,Pr-1>P1) +x§7 1(I’T— G Pr>Mr_1) +x{(pTva) =0. (54

The equilibria of this model are equilibria of a finite economy with transfer
payments. For an equilibrium to exist, it is necessary that m_, +mo+my_ +
my=0. If this condition holds, but the individual transfers are not zero, then
changes in the price level result in changes in real transfer payments. We
would expect this model to have a one-dimensional continuum of equilibria
indexed by the level of real transfer payments. For any fixed level of real
transfer payments, the equilibrium conditions involve a finite number of
equations and the same finite number of unknowns. We would therefore
expect this model to generically have determinate equilibria.

Solving for equilibria of the truncated model is a two-point boundary
value problem: there are four initial values for prices; there are two
restrictions implied by the initial conditions and two restrictions implied by
the terminal conditions. In practice, there are several ways to calculate
equilibria.

Auerbach and Kotlikoff (1987) use a nonlinear Gauss—Seidel method. [See
Fair and Taylor (1983) for another application of this general method.] They
start by guessing a solution, the steady state for instance. They then solve the
model going forward using this guess as expectations for future variables.
After they are done, they use the calculated solution as a new guess and
repeat the process. They stop when, and if, the calculated solution agrees
with the previous guess. This method may be limited in its applicability,
however: Laitner (1988) has shown that each of the twelve examples studied
by Auerbach and Kotlikoff are determinate (which is, of course, good news
in terms of their comparative statics analysis). Kehoe and Levine (1989)
further argue that the nonlinear Gauss—Seidel method that they use does not
converge for examples that exhibit indeterminacy or instability.

Lipton, Poterba, Sachs and Summers (1982) propose a method widely used
by engineers and physical scientists, called multiple shooting. They start by
guessing the initial values for variables and solving for the resulting price
path in much the same way as we have done in the previous section. They
then adjust these initial values until the price path satisfies the terminal
conditions. Unless the equilibria are completely indeterminate, most paths
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diverge very rapidly. Because of this the algorithm is very numerically
unstable. They therefore propose dividing the time period into segments.
They then guess terminal conditions for each segment, solve for a solution
over each segment, adjust the terminal conditions, and then repeat. As Press,
Flannery, Teukolsky and Vetterling. (1986) point out, however, shooting
methods do not work well in situations where the value of the largest
modulus of an eigenvalue is much greater than f.

Perhaps the easiest way to solve for an equilibrium might be some variant
of Newton’s method to solve the whole system simultaneously. To be sure,
there is a large number of equations and unknowns. The Jacobian matrix of
the excess demands, however, although very large, is a very special matrix:
only the prices (p,_2,P,-1>PiDPi+1-Pi+2) Matter in determining the excess
demand in period t. Inverting this matrix, the principal step in each iteration
of Newton’s method, could take advantage of its band-diagonal structure.
There may be numerical problems in inverting this matrix when there is
indeterminacy or instability, however. In such cases, Kehoe and Levine
(1989) argue that the Jacobian matrix is nearly singular. They present an
alternative method for computing equilibria in such cases based on the
standard proof of the local stable manifold theorem, which relies on a
contraction mapping [see Irwin (1980)].

If the truncation date T is large enough, then an equilibrium of the
truncated model serves as a good approximation to an equilibrium of the
actual model, at least in the early periods. In fact, the usual proof of the
existence of equilibrium for the infinite-horizon overlapping generations
model depends on this property of the truncated model [see, for example,
Balasko, Cass and Shell (1980)].

How does indeterminacy in the infinite model manifest itself in the
truncated model? To answer this question, let us consider an infinite model
with a continuum of equilibria that converge to the same steady state f.
Choose two price paths in that continuum (py, p,,...) and (py,Ps,...). For T
large enough, both (pr /P, Pr+2/Pr+1) and (Pr+1/Pr>Pr+2/Pr+1) ATE VEIy
close to (B, f) and consequently each other. Imposing the terminal conditions
(5.1) with pryy=(Pr+1/Pr)pr and pri2=(Pr+2/Pr+1)Pr+1, We generate
(P1.P2»---»Pr) as an equilibrium; with pr.; and pr., Wwe generate
(p1,P2»---»Pr). No matter how large the difference between p, and p, there
exists a T large enough so that py and p; are arbitrarily close. Indeterminacy
in the infinite model can, therefore, be seen to manifest itself as sensitivity to
terminal conditions in the truncated model, sensitivity that becomes more
and more acute as the truncation date becomes larger and larger.

Notice that in a model where m=0, we need only fix the terminal ratio
Pr+2/Pr+,. homogeneity allows us to set pr,,=1, and fixing the ratio
Pr+2/Pr+1 fixes pri,. The equilibrium conditions now constitute a non-
homogeneous system of T equations in the T unknowns py,p,,....pr. In a
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Table §

Terminal rate (t=20) Initial rate (t=1)

1.1615% (0.79) 000%  (1.00)
1.1675% (0.79) 081,  (0.85)
1.1739% (0.79) 180%  (0.70)
1.1743% (0.79) 353 (0.50)
1.1779% (0.79) 259%  (0.60)
1.1871% 079 —173%  (500)

Note: Numbers in parentheses are p,, 1/p;.

model where m#0, however, we need to fix the levels of both pr., and
Pr+2-

To illustrate this point, we refer back to the ‘realistic’ example with a 3.5
percent subjective discount rate, a 0.25 intertemporal elasticity of substitu-
tion, an endowment pattern of (3,12,1), no money, and an initial middle-aged
endowment pattern of (8.27,1). (This example has been illustrated in figs.
1-3.) If each period is 20 years long, the 20th period corresponds to a date
400 years from the initial period. If we restrict attention to equilibria without
valued fiat money, we can dispense with one of the two terminal conditions
as discussed above. Consequently, we can truncate the model by specifying a
single terminal interest rate. Using the equilibrium conditions (2.6)«2.8), we
can calculate the relationship between the terminal annual interest rate and
the uniquely determined initial annual interest rate (table 5). As this table
makes clear, in an economy with equilibria that are indeterminate in the
infinite horizon, trivial changes in the anticipated interest rate in the distant
future have an astonishing impact on initial equilibrium interest rates.

Another way to view this problem of indeterminacy, credited by Calvo
(1978) to Rolf Mantel, is to consider the difference equation

X3(Pr—s—2:P1-s-1:P7—5) T X2(Pr—s— 1, PT-5 P75+ 1)
+x1(pT*s’pT—s+lapT*s+2)=0’ (5.5)

s=1,2,..., that runs backwards from the terminal conditions. The roots of
the polynomial that correspond to the linearized version of this equation are
the reciprocals of the roots of (3.5). If the original system has too many
stable roots, the backwards system has too many unstable roots: small
changes in the terminal conditions cause large changes in prices as the path
moves backwards over time.

How does instability in the infinite model manifest itself in the truncated
model? Here we seem to be faced with a dilemma: we know that, if we
truncate the model by requiring that Pr+2=PBpPrs1=p*pr, We can compute
an approximate equilibrium for the infinite-horizon model. We also know,
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however, that it is extremely unlikely for the infinite-horizon model to have
an equilibrium where pr,, and pr,, are close to these values. The solution
to this dilemma lies in the nature of the approximation. We only know that
the equilibria of the truncated model are close to the equilibria of the actual
model in early periods; later they may diverge sharply. To get a good
approximation to the equilibria of an infinite model near an unstable steady
state for a prespecified number of periods, we may have to choose a very
large truncation date.

As we would expect, the problems of indeterminacy and instability
represent two sides of the same coin. Indeterminacy manifests itself as
sensitivity to terminal conditions. The larger the truncation date, the more
sensitive prices early in the price path are to terminal conditions. Later
prices, however, which all converge to the steady state, are relatively
insensitive. Instability, in contrast, manifests itself as a need for a very large
truncation date. The larger the truncation date, the less sensitive prices early
in the price path are to terminal conditions. Later prices, however, may
diverge sharply from equilibrium prices for the actual model. As we have
mentioned, however, it is not clear that perfect foresight is a sensible
hypothesis in such situations.

References

Auerbach, AJ. and LJ. Kotlikoff, 1987, Dynamic fiscal analysis (Cambridge University Press,
Cambridge).

Balasko, Y. and K. Shell, 1980, The overlapping-generations model, I: The case of pure exchange
without money, Journal of Economic Theory 23, 281-306.

Balasko, Y. and K. Shell, 1981, The overlapping-generations model, 1I: The case of log-linear
utility functions, Journal of Economic Theory 24, 143-152.

Balasko, Y., D. Cass and K. Shell, 1980, Existence of competitive equilibrium in a general
overlapping-generations model, Journal of Economic Theory 23, 307-322.

Benhabib, J. and R.H. Day, 1982, A characterization of erratic dynamics in the overlapping-
generations model, Journal of Economic Dynamics and Control 4, 37-55.

Burke, J.L., 1987, Inactive transfer policies and efficiency in general overlapping-generations
economies, Journal of Mathematical Economics 16, 201-222.

Calvo, G.A., 1978, On the indeterminacy of interest rates and wages with perfect foresight,
Journal of Economic Theory 19, 321-337.

Debreu, G., 1954, Valuation equilibrium and Pareto optimum, Proceedings of the National
Academy of Sciences 40, 588-592.

Debreu, G., 1974, Excess demand functions, Journal of Mathematical Economics 1, 15-23.

Diamond, P.H. 1965, National debt in a neoclassical growth model, American Economic
Review 55, 1126-1150.

Fair, R.C. and J.B. Taylor, 1983, Solution and maximum likelihood estimation of dynamic
nonlinear rational expectations models, Econometrica 51, 1169-1185.

Feldstein, M., 1977, The surprising incidence of a tax on pure rent: A new answer to an old
question, Journal of Political Economy 85, 349-360.

Gale, D., 1973, Pure exchange equilibrium of dynamic economic models, Journal of Economic
Theory 6, 12-36.

Geanakoplos, J.D. and H.M. Polemarchakis, 1984, Intertemporally separable, overlapping-
generations economies, Journal of Economic Theory 34, 207-215.

Irwin, M.C., 1980, Smooth dynamical systems (Academic Press, New York).



T.J. Kehoe and D.K. Levine, The economics of indeterminacy 243

Kehoe, TJ. and DK. Levine, 1984a, Intertemporal separability in overlapping-generations
models, Journal of Economic Theory 34, 216-226.

Kehoe, T.J. and DK. Levine, 1984b, Regularity in overlapping generations exchange economies,
Journal of Mathematical Economics 13, 69-93.

Kehoe, T.J. and D.K. Levine, 1985, Comparative statics and perfect foresight in infinite horizon
economies, Econometrica 53, 433—453.

Kehoe, T.J. and D.K. Levine, 1989, Computing equilibria of deterministic dynamic economies,
Unpublished manuscript.

Kehoe, T.J., D.K. Levine, A. Mas-Colell and M. Woodford, 1986, Gross substitutability in large-
scale economies, Unpublished manuscript.

Kehoe, T.J., D.K. Levine and P.M. Romer, 1989, Characterizing the equilibria of models with
externalities and taxes as solutions to optimization problems, Unpublished manuscript.

Laitner, J., 1984, Transition time paths for overlapping-generations models, Journal of Economic
Dynamics and Control 7, 111-129.

Laitner, J., 1988, Tax changes and phase diagrams for an overlapping generations model,
Unpublished manuscript.

Lipton, D. J. Poterba, J. Sachs and L. Summers, 1982, Multiple shooting in rational
expectations models, Econometrica 50, 1329-1333.

Mankiw, N.G., J.J. Rotemberg and L.H. Summers, 1985, Intertemporal substitution in macroe-
conomics, Quarterly Journal of Economics 100, 225-251.

Muller, W.J., Il and M. Woodford, 1988, Determinacy of equilibrium in stationary economies
with both finite and infinite lived consumers, Journal of Economic Theory 46, 255-290.

Peck, J., 1988, On the existence of sunspot equilibria in an overlapping generations model,
Journal of Economic Theory 44, 19-42.

Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, 1986, Numerical recipes: The
art of scientific computing (Cambridge University Press, Cambridge).

Samuelson, P.A., 1958, An exact consumption-loan model of interest with or without the social
contrivance of money, Journal of Political Economy 66, 467-482.

Samuelson, P.A., 1960, Infinity, unanimity, and singularity: A reply, Journal of Political
Economy 68, 76-83.

Spear, S.E., 1988, Growth, externalities, and sunspots, Unpublished manuscript.

Woodford, M., 1986a, Stationary sunspot equilibria in a finance constrained economy, Journal
of Economic Theory 40, 128-137.

Woodford, M., 1986b, Stationary sunspot equilibria: The case of small fluctuations around a
deterministic steady state, Unpublished manuscript.






