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Econometrica, Vol. 53, No. 2 (March, 1985)

COMPARATIVE STATICS AND PERFECT FORESIGHT
IN INFINITE HORIZON ECONOMIES

By TimoTHY J. KEHOE AND Davip K. LEVINE!

Does a pure exchange economy with an infinite time horizon have determinate perfect
foresight equilibria? When there is a finite number of infinitely lived agents equilibria are
generically determinate. This is not true with overlapping generations of finitely lived
agents. We ask whether the initial conditions together with the requirement of convergence
to a steady state locally determine an equilibrium price path. In this framework there are
many economies with isolated equilibria, many with continua of equilibria, and many with
no equilibria at all. With two or more goods in every period not only can the price level
be indeterminate but relative prices as well. Furthermore, such indeterminacy can occur
whether or not there is fiat money and whether or not the equilibria are Pareto efficient.

1. INTRODUCTION

THIS PAPER CONSIDERS whether infinite horizon economies have determinate
perfect foresight equilibria.. This question is of crucial importance. If instead
equilibria are locally indeterminate, not only are we unable to make comparative
static predictions, but the agents in the model are unable to determine the
consequences of unanticipated shocks. The idea underlying perfect foresight is
that agents’ expectations should be the actual future sequence predicted by the
model; if the model does not make determinate predictions, the concept of perfect
foresight is meaningless.

We consider two extreme cases: the first with a finite number of infinitely lived
consumers and the second with an infinite number of finitely lived consumers,
an overlapping generations model. Both are models of stationary pure exchange
economies. No production, including the storage of goods between periods, can
occur. These models are unrealistic but are the easiest to study. Extensions of
the results of this paper to models with production, infinitely lived assets, and
mixtures of the two types of consumers are presented by Muller and Woodford
[29].

When there is a finite number of infinitely lived consumers, we argue that
equilibria are generically determinate. This is because the effective number of
equations determining equilibria is not infinite, but equal to the number of agents
minus one and must determine the marginal utility of income for all but one
agent. Generically, near an equilibrium, these equations are independent and
exactly determine the unknowns.

When there are infinitely many overlapping generations, this reasoning breaks
down: An infinite number of equations is not necessarily sufficient to determine
an infinite number of unknowns. We consider whether the initial conditions

! We are grateful to David Backus, Drew Fudenberg, John Geanakopolos, J. S. Jordan, Andreu
Mas-Colell, James Mirrlees, Herbert Scarf, and participants in seminars at M.L.T., U.C. Berkeley,
U.C. San Diego, U.C.L.A., McMaster University, the Federal Reserve Bank of Minneapolis, the
NBER General Equilibrium Conference, Northwestern University, March 1982, and the Latin
American Econometric Society Meetings, Mexico City, July 1982, for helpful comments and
suggestions.
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together with the requirement of convergence to a nearby steady state locally
determine an equilibrium price path. We allow two alternative types of initial
conditions. In the first the old generation in the initial period has nominal claims
on the endowment of the young generation. In the second the old generation has
real claims. In the terminology of Samuelson [31], the first situation is one with
fiat money and the second is one without. This paper provides a catalog of all
robust examples of indeterminacy and instability that can occur near a steady
state with both types of conditions: In both cases there are many economies with
isolated equilibria, many with continua of equilibria, and many with no equilibria
at all. With two or more goods in every period not only can the price level be
indeterminate but relative prices can be as well. Interestingly, indeterminacy has
little to do with Pareto efficiency: Equilibria may be determinate or indeterminate
regardless of whether they are Pareto efficient or not.

We also consider an alternative conceptual experiment in which agents use a
forecast rule that depends only on current prices to predict next period prices.
If the steady state is stable, and if we rule out a certain peculiar case, a perfect
foresight forecast rule exists. If there is a continuum of equilibria, there may be
a continuum of such forecast rules. Even so, the derivative of such a rule, evaluated
at the steady state prices, is locally determinate. This makes it possible to do
comparative statics in a neighborhood of the steady state despite the local
nonuniqueness of equilibrium. McCallum [28] has argued that indeterminacy
can often be eliminated in linear rational expectations models by insisting that
agents employ a closed-loop forecast rule that utilizes a minimal set of informa-
tion. This suggestion is in very much the same spirit as our analysis of forecast
rules, although differences between the two frameworks are large enough to make
a close comparison impossible.

Finally, we contrast the determinacy in the model with a finite number of
infinitely lived agents with the indeterminacy in the overlapping generations
model. Although the models and conceptual experiments that we perform seem
quite different in the two cases, following Barro [4], we argue that the infinitely
lived model can be thought of as an overlapping generations model with bequests.

We are by no means the first to address the issues analyzed in this paper. Let
us therefore briefly discuss the relationship of our results with some of those that
have appeared previously:

That an overlapping generations model might have a continuum of equilibria
is well known. Samuelson [31] himself has noted the problems with counting
equations and unknowns in this type of model. Gale [16] has provided a complete
analysis of the overlapping generations model with a single two-period lived
consumer in each generation and one good in each period. In such a model he
finds that indeterminacy is always associated with initial conditions that allow
nominal claims: If there is no fiat money, then equilibria are always determinate.
Even when there is fiat money any indeterminacy is at most one dimensional; in
other words, if there is any indeterminacy, the equilibria can be indexed by a
single number, for example, the price of fiat money. Balasko and Shell [2] have
extended these results to a model in which there are many goods in each period
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but a single two-period lived consumer in each generation with a Cobb-Douglas
utility function. In contrast to these results, our analysis indicates that indeter-
minacy in more general models does not depend on the existence of fiat money
nor is it necessarily one dimensional; even if an index of prices relative to the
stock of money is exogenously fixed, the relative prices of goods within a period
may be indeterminate.

Burmeister, Caton, Dobell, and Ross [8] have investigated the possibilities of
indeterminacy in growth models with heterogeneous capital goods. Their analysis
is similar to that in this paper in that they consider a linearized system near a
steady state and ask whether convergence to that steady state ensures determinacy.
Their analysis differs from ours in that the savings behavior of consumers is
exogenously given rather than the result of utility maximization and perfect
foresight. Our analysis indicates that utility maximization and perfect foresight
do rule out indeterminacy when there are a finite number of infinitely lived agents.
Evenin an overlapping generations economy some constraint on potential indeter-
minacy is imposed by whether or not there are nominal initial claims. Incidentally,
although more than one dimension of indeterminacy seems to be possible within
the framework of Burmeister et al., they do not mention it: All of the indeterminacy
that they discuss is one dimensional.

Calvo [9] has constructed simple examples of indeterminacy similar to that
discussed by Burmeister et al. His models differ from theirs in that savings
behavior arises from utility maximization by overlapping generations consumers
with perfect foresight. The indeterminacy in these examples is still one
dimensional and is indexed by the price of an asset such as land or capital.

McCallum [28] has recently tried to put discussions of indeterminacy into
perspective, arguing that indeterminacy ‘‘is simply an inescapable aspect of
dynamic models involving expectations, one which is not basically attributable
to the rationality assumption.” In particular, he claims that even the assumption
of a finite number of infinitely lived agents does not eliminate the possibility of
indeterminacy. He bases this claim on a model constructed by Calvo [10] in
which real money balances enter into utility functions and production functions,
but where the money supply is set by the government in nominal terms. The
analysis of the model with a finite number of infinitely lived consumers presented
in this paper should cast some doubt on this claim.

Using nonstandard analysis, Brown and Geanakopolos [7] have independently
investigated the possibility of n —1 dimensions of indeterminacy in a nonstation-
ary overlapping generations model without nominal claims. At this stage, however,
their approach and results are too different from ours to allow a close comparison.

Finally, the present authors have written several other papers closely related
to this one: Kehoe and Levine [22] provide a rigorous regularity analysis of the
overlapping generations model; several of the technical results of that paper are
used here. An earlier version of this paper, Kehoe and Levine [19], contains the
regularity analysis for the case of infinitely lived consumers. Kehoe and Levine
[21] analyze the special case of an overlapping generations model with a two-
period lived representative consumer with separable preferences in each gener-
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ation. Balasko and Shell [3] and Geanakopolos and Polemarchakis [17] have also
pointed out that strong determinacy results can be obtained for this case. In
another paper, Kehoe and Levine [20] argue that the results obtained for the
two-period separable case do not generalize further. There they provide a counter-
example with a representative consumer with separable preferences who lives
for three periods.

2. THE FINITE AGENT MODEL

We begin by analyzing a pure exchange economy with a finite number of agents
who consume over an infinite number of time periods. In each period there are
n goods. Each of the m different consumers is specified by a utility function of
the form ZZO viu;(x!) and a vector of initial endowments w' that is the same in
every period. Here 1> v, > 0 is a discount factor. We make the following assump-
tions on u; and w':

AssuMPTION a.l (Differentiability): u;: R}, R is C>.
AssuMPTION a.2 (Strict concavity): D*u,(x) is negative definite for all x € R" ,..
AssuMPTION a.3 (Monotonicity): Du;(x)>0 for all xe R’} ..

AssUMPTION a.4 (Strictly positive endowments): w' e R%,, i=1,..., m.

AssuMPTION a.5 (Boundary): || Du;(x)| - as x, > x where some x’ =0, j=
1, ..., n, Du(x)x is bounded, however, for all x in any bounded subset of R’ .

It should be possible to extend our analysis to more general types of preferences
that do not require additive separability, such as those described by Koopmans,
Diamond, and Williamson [23]. We do not attempt to do so here.

Let p,=(p!,...,p;) denote the vector of prices prevailing in period t. When
faced with a sequence { po, py, . . .} of strictly positive price vectors, agent i chooses
a sequence of consumption vectors {x}, x|, ...} that solves the problem

@1  max ¥ ylu(xl)

t=0

The purpose of Assumptions a.1-a.5 is to ensure that, for any price sequence,
this problem has a solution that is strictly positive and satisfies the budget
constraint with equality. Assumption a.5 ensures that consumers’ indifference
surfaces become parallel to the coordinate hyperplane as we move towards the
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boundary of the positive orthant. It is this assumption that rules out corner
solutions. The necessary and sufficient conditions for {x}, x:, .. .}tosolve (2.1) are

(2.2) yiDu,(x}) = pp, for some ;>0 (t=0,1,...),
(23) X pixi=3 piw'
t=0 t=0

A (perfect foresight) equilibrium of this economy is defined to be a price
sequence { po, py, . . .} and a sequence of consumption vectors {x}, x', ...} for each
agent, i=1,..., m, that satisfy the following conditions:

ConprTION e.1: For each agent i {x}, x}, ...} solves (2.1).

ConpITION €.2: Y% xi=Y" , w\ t=0,1,....

To find the equilibria of this economy we utilize an approach developed by
Negishi [30] and Mantel [24] for a model with a finite number of goods. Letting

Ay i=1,..., m, be some strictly positive welfare weights, we set up the welfare
maximization problem

(2.4) max Y A; ) ')’:ui(xi)
i=1 =0

w' (t=0,1,...).

I3

m
subject to Y x,<
i=1 t

xi=0.
Again a.1-a.5 guarantee that this problem has a solution that is strictly positive

and satisfies the feasibility constraint with equality. The necessary and sufficient
conditions for a solution are

(25) )‘x'Y:Duz(x‘r):P’t, (i=1,"'7m)s
for some p,>0 (t=0,1,...),
(2.6) Y xi=Y w (t=0,1,...).

An allocation sequence is Pareto optimal if and only if it solves problem (2.4).
Notice that Condition e.2 and (2.6) are the same and, furthermore, if we set
" Ai =1/, that (2.2) and (2.5) are also the same. In other words, a Pareto efficient
allocation and associated Lagrange multipliers {py, p;, ...} satisfy all of our
equilibrium conditions except, possibly, (2.3). The problem of finding an equili-
brium therefore becomes one of finding the right welfare weights A, i=1,..., m
so that (2.3) is satisfied.
Let p,(A) and x;(A) be the solutions to (2.5) and (2.6). The strict concavity of
u; ensures that p, and x! are uniquely defined and continuous. For each agent

b ¢
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we define the excess savings function
@7 s)= T p) ' =xi(a).

Using Assumptions a.l and a.5, we can show that the infinite sum in (2.7)
converges uniformly on compact subsets of R}, and, consequently, that s; is
well defined and continuous.

It is easy to verify that the functions s;(A) are homogeneous of degree one and
sum to zero. In fact, the functions s;(A)/A; have mathematical properties identical
to those of the excess demand functions of a pure exchange economy with m
goods. A standard argument implies the existence of a vector of welfare weights
A such that

(2.8) s(A)=0.

We call this vector A an equilibrium since our above arguments ensure that when
we solve the welfare maximization problem (2.4) using A for welfare weights the
solution is an equilibrium allocation. Conversely, any equlibrium is associated
with such a vector A.

PrOPOSITION 2.1: If the economy ((u; vy, w'), i=1,..., m) satisfies Assump-
tions a.1-a.5, then an equilibrium exists and every equilibrium is characterized by
welfare weights A, i=1, ..., m, satisfying (2.8).

We have reduced the equilibrium conditions for the model with a finite number
of consumers to a finite number of equations in the same finite number of
unknowns: The homogeneity of s implies that one of the variables A; is redundant.
That the s;(A) sum to zero, however, implies that we can ignore one of the
equations s;(A)=0. To do regularity analysis we must be able to ensure that s is
continuously differentiable. To do this as simply as possible, we impose the
following additional assumption on u;:

1

ASSUMPTION a.6: Du;D*u;" is bounded on bounded subsets of R’} ,.

Suppose, for example, that u; is homogeneous of degree 0<«;<1. Then
Assumption a.6 is satisfied since Du;(x)D?u;(x)™" = (a; — 1)x". Notice, however,
that Assumption a.6 allows substantially more general preferences. Such an
assumption is needed to ensure that the derivatives of u; are well behaved even
as x; approaches 0. A proof of the following proposition can be found in Kehoe
and Levine [19].

ProPoOsITION 2.2: If the economy ((u;,y;,, w'), i=1,..., m) satisfies Assumption
a.1-a.6, then s is continuously differentiable for all A > 0.

A regular economy ((u;, y, w'),i=1,..., m) is defined to be one that satisfies
Assumptions a.1-a.6 and the restriction:
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ASSUMPTION r.1: Ds(A) has rank m —1 at every equilibrium A.

This concept of regular economy is analogous to that developed by Debreu
[12] for pure exchange economies with a finite number of goods. If an economy
is regular, then the inverse function theorem implies that it has a finite number
of isolated equilibria. The implicit function theorem implies that these equilibria
vary continuously with the parameters of the economy. Furthermore, the topologi-
cal index theorem introduced into economies by Dierker [15] can be used to
count the number of equilibria of such economies.

The appeal of the concept of regularity is enhanced by its genericity: Almost
all economies are regular. Suppose we parameterize the space of economies
((u, v, w'),i=1,..., m) by allowing the endowments to vary while keeping their
sum, w=Y,_ w', constant, but fixing the utility functions and discount factors.
Allowing endowments to vary while keeping their sum fixed allows us to vary
s;(1) while keeping P,(A) and xi()) fixed.

PrROPOSITION 2.3: Regular economies form an open dense set of full measure in
the space of economies parameterized by endowments.

The proof of this Proposition, which is given by Kehoe and Levine [19], is a
direct application of the transversality theorem of differential topology. It can
easily be extended to a proof that regular economies form an open dense subset
of the space of economies where the only restrictions are Assumptions a.l-a.6
if we are careful about giving this space a topological structure.

3. THE OVERLAPPING GENERATIONS MODEL

We now analyze an economy with an infinite number of finitely lived agents,
a stationary overlapping generations model that generalizes that introduced by
Samuelson [31]. Again there are n goods in each time period. Each generation
0 <t <o is identical and consumes in periods t and ¢+ 1. The consumption and
savings decisions of the (possibly many different types of) consumers in generation
t are aggregated into excess demand functions y( p,, p.+;) in period t and z(p,, pi+1)
in period t+ 1. The vector p, = (p1, . .., pr) denotes the prices prevailing in period
t. We assume that excess demands satisfy the following assumptions:

AssumPTION A.1 (Differentiability): y, z: R3"%. > R" are smooth functions.
AssuMPTION A.2 (Walras’s law): p;y(p, pi+1) + Pi+12( Py, Pi+1) = 0.
AssumMPTION A.3 (Homogeneity): y and z are homogeneous of degree zero.

AssumPTION A.4 (Boundary): |(y(qx), z(qx))|| = © as qi—> q where some, but
notall,qg’ =0,j=1,...,2n. (y, z) is bounded from below, however, for all q € R".

Assumption A.l has been shown by Debreu [13] and Mas-Colell [26] to entail
relatively little loss of generality. Assumption A.2 implies that there is some means
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of contracting between generations so that each consumer faces an ordinary
budget constraint in the two periods of his life. As we show later, this means the
economy is one with a constant (possibly zero or negative) stock of fiat money.
Assumption A.4 is a standard boundary assumption. It is used to guarantee the
existence of interior steady states. Muller and Woodford [29] have extended the
analysis presented in this paper to allow free goods; we do not attempt to do so
here. ‘

Note that we consider only pure exchange economies and two-period lived
consumers. We do, however, allow many goods and types of consumers, and the
multiperiod consumption case can easily be reduced to the case we consider: If
consumers live m periods, we simply redefine generations so that consumers born
in periods 1,2,..., m—1 are generation 1, consumers born in periods m, m+
1,...,2m—2 are generation 2, and so on. In this reformulation each generation
overlaps only with the next generation. Notice that the number of goods in each
newly defined period, and the number of consumers in each newly defined
generation, increase by a factor of m —1. See Balasko, Cass, and Shell [1] for a
detailed description of this procedure.

The economy begins in period 1. The excess demand of old people (generation
0) in period 1 is z4(a, p;) where a is a vector of parameters representing the past
history of the economy. A (perfect foresight) equilibrium of an economy (z,, y, z)
starting at a is defined to be a price sequence { p,, p, . . .} that satisfies the following
conditions:

ConpitioN E.1: zy(a, p;) +y(py, p2) =0.

ConpitioN E.2: z(p,_;, p)) +y(ps, Pes1) =0, t>1.

Once p, and p, are determined Condition E.2 acts as a nonlinear difference
equation determining all future prices. Our major focus is on the extent to which
E.1 determines initial prices p, and p,. The next section studies the role of initial
conditions z, and a. Let us now ignore E.1, however, and focus attention on the
difference equation E.2.

We define a steady state of E.2 to be a price vector (p, Bp) € R, that satisfies

(3.1)  z(p, Bp)+y(Bp, B*p) = z(p, Bp) + y(p, Bp) =0.

In other words, if the prices p prevail forever and the price level grows by B
each period, markets always clear. Here 1/ — 1 is the steady state rate of interest.
In the generic case Kehoe and Levine [22] show that up to a normalization of
prices there are finitely many steady states.

Our interest in this paper is in what happens near a steady state. Let ( p, Bp)
be a steady state, and let U < R%", be an open cone that contains (p, Bp). It is
convenient to define q,=(p, p;+;) and view E.2 as the first order difference
equation

(3.2) z(q,-1)+y(q)=0, t>1.
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We call a path {q,, q,, . . .} that satisfies Condition E.1 and E.2 locally stable with
respect to g =(p, Bp) and U if g,€ U and lim,.« q./||4.|| = q/]Iq||. The question
we are trying to answer is whether or not there is a determinate price path that
satisfies Conditions E.l1 and E.2 and is locally stable.

One reason for restricting our attention to local stability is that it is the easiest
case to study. Stable price paths are also the most plausible perfect foresight
equilibria. If prices are converging to a nearby steady state, then traders can
compute future prices by using only local information. If prices are not going to
the steady state, then traders need global information and very large computers
to compute future prices. Note that, if equilibrium is indeterminate in the restricted
sense that a continuum of equilibria converge to the steady state, it is indeterminate
in the broader sense as well. On the other hand, even if equilibrium is determinate
in the restricted sense there may be a continuum of equilibria that leave the
neighborhood of the steady state.

We can linearize E.2 around a steady state ( p, Bp) as

(33)  Diz(p1—B"'p)+(Dyz+B7'Dyy)(p.— B'p)
+B 7' Dyy(pivi—B'p)=0.

Here all derivatives are evaluated at the steady state (p, Bp), and we use (3.1)
and the fact that the derivatives of excess demand are homogeneous of degree
minus one. Our homogeneity Assumption A.3 allows us to rewrite (3.3) as

(3.4) Dlzpt—l+(D22+B_lDly)pt+B_lD2ypt+l:0-

If the following regularity restriction is satisfied, then (3.4) defines a second order
linear difference equation.

AssumptioN R.1: D,y(p, Bp) is nonsingular at all steady states (p, Bp).

Again letting g, =(p,, pi+1), we can write out (3.4) as the first order equation
q. = Gq,_, where

0 I
(3.5) G=[—3D2y"Dlz _Dzy“(BD22+D1y)]-

Homogeneity implies that Gg = Bq where g = (p, Bp); in other words, G has an
eigenvalue equal to B. Walras’s law implies that p[—BD,zD,y]G=
p'[—BD,z D,y]; in other words, G has an eigenvalue equal to unity. Let us assume
that G also satisfies the following regularity restriction:

AssuMPTION R.2: G is nonsingular and has distinct eigenvalues; furthermore,
eigenvalues have the same modulus if and only if they are complex conjugates.

Consider the difference equation g, = (1/8) Gq,_,. The steady state price vector
q is a fixed point of this difference equation. Let n* be the number of eigenvalues
of (1/B) G that lie inside the unit circle, that is, whose moduli are less than unity.
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These correspond to eigenvalues of G that lie inside the circle of radius 8. A
standard theorem on linear difference equations implies that the set of initial
conditions ¢, such that q,=Ggq,_, has lim,.» q/|q]=49/|lq| is an n°+1
dimensional subspace V, of R*" (see Irwin [18, pp. 151-154] and Kehoe and
Levine [22]). The extra dimension shows up because of homogeneity: If g, is
such that lim,. q./||q.| = 4/|lq||, then so is 6q, for any 6 # 0. The subspace V,
is spanned by the n® eigenvectors of G associated with the eigenvalues that lie
inside the circle of radius B and the eigenvector g associated with the eigenvalue
B.
The implicit function theorem implies that, if Assumption R.1 is satisfied, then
we can solve Condition E.2 to find a nonlinear difference equation ¢, = g(q,_,)
defined for an open cone U that contains g. Naturally, Dg(gq) = G. Let W, be
the subset of initial conditions g, € U such that lim,. q./||¢.]| = ¢/]ql|- In other
words, given (p,, p,) we can find a path in U that converges to the ray proportional
to (p, Bp) if and only if (p,, p,) € W,. The relationship between V, and W, is
given in the following theorem:

ProrosITION 3.1: W, is an n®+ 1 dimensional manifold with tangent space at q
equal to V.

This result is proven by Kehoe and Levine [22]. That V is the tangent space
of W, at q justifies our intuition about (3.4) as a linear approximation to E.2: It
says that the best linear approximation to W, at q is affine set V,+{q}.

To establish Proposition 3.1 we need the regularity Assumptions R.1-R.2. These
can be justified by showing that they hold for almost all economies, in other
words, that they hold for an open dense subset of the space of economies. This
is done by Kehoe and Levine [22]. This means that any regular economy can be
approximated by one that satisfies Assumptions R.1-R.2 and that any slight
perturbation of an economy that satisfies R.1-R.2 still satisfies them.

We have remarked that G has one root equal to 8 and one unit root. Are we
justified in assuming it satisfies no other restrictions? Might it not be the case,
as for example in optimal control, that half the eigenvalues of G lie inside the
unit circle and half lie outside? Kehoe and Levine [19] show that for any n®
satisfying 2n — 1 = n® = 0, there exists an open set of economies that have a steady
state with n° roots inside the circle of radius 8 and 2n —n* —1 outside the circle
with radius B. Furthermore, the work of Mantel [25] and Debreu [14] shows that
for any excess demands (y, z) and any compact subset of R?% we can find a
generation of 2n consumers with well behaved preferences whose aggregate excess
demands (y*, z*) agree with (y, z) on that subset. Mas-Colell [27] has shown
that we can choose this compact subset and (y*, z*) so that all of the steady
states of-‘both (3, z) and (y*, z*) are contained in the interior of this subset. Since
we are interested solely in neighborhoods of steady states, we can therefore regard
A.1-A.4 as exhausting all the restrictions placed on excess demands by the
assumption of utility maximization by heterogeneous consumers. A formal proof
of this point is given by Kehoe and Levine [22].
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4. DETERMINACY OF EQUILIBRIUM

The excess demand of generation 0 in period 1 is zy(a, p;). The vector a
represents the history of the system. This is our conceptual experiment: Prior to
t =1 the economy is on some price path. Suddenly, after generation 0 makes its
savings decisions, but before p, is determined, an unanticipated shock occurs.
No further shocks occur, and hereafter expectations are fulfilled, although there
is no reason why generation 0’s expectations of p, should be. Do the equilibrium
Conditions E.1 and E.2 determine a unique path to the new steady state, at least
locally? If so, we can do comparative statics, evaluating the impact of the
unanticipated shock. If not, it is questionable that traders could deduce which
of the many perfect foresight paths they would be on.

Note that this is not the only question we could ask. We might enquire whether
for a given perfect foresight path stretching back to minus infinity there is a
unique extension to plus infinity. We believe that the answer to this question is
in general yes. Or we might ask whether the price paths {..., p_y, po, P1, . . .} that
are perfect foresight paths are locally unique. We believe that there is a large set
of economies for which the answer to this question is yes, and an equally large
set for which it is no. We feel that the question we have posed is the most
interesting one, however, and, of these questions, the only one relevant for applied
work. Another relevant question is, of course, how to handle price paths that are
not near steady states. As we have mentioned, however, it is not clear that perfect
foresight is a good hypothesis in such cases.

With this conceptual experiment in mind, we can now see the role played by
the vector a: It represents the claims on current consumption owed to old people
based on their savings decisions made in period 0. Define the money supply
© = pizo(a, p;) to be the nominal claims of old people. Observe that in equilibrium
p1y(p1, p2) = —p, by Walras’s law p3z( py, p,) = p, in equilibrium p3y( p,, p3) = —u,
and so forth. Consequently, u is the fixed nominal net savings of the economy
for all time; that is, we assume that there is no government intervention in money
markets.

In the steady state we have B8'p’z(p, Bp) = and B'p’y(p, Bp) = —u. There are
two cases of interest. The nominal case has w # 0. In this case it must be that
B = 1. Gale [16] calls steady states of this type golden rule steady states. This is
because for excess demand functions derived from utility maximization nominal
steady states maximize a weighted sum of individual utilities subject to the
constraint of stationary consumption over time. Alternatively, in the real case
w = 0. Gale refers to steady states of this type as balanced steady states. In this
case if B=1 then y(p, p)+z(p, p)=0 and p'y(p, p) =0, which are typically n
equations in the n — 1 unknowns p, and B =1 is merely coincidental. Thus, when
u =0 the most interesting case is B # 1. Using an index theorem, Kehoe and
Levine [22] prove that there is generically an odd number of steady states of each
type, which, of course, implies the existence of a steady state of each type.

We suppose first that claims are denoted in nominal terms. We cannot assume
that excess demand by the old zy(a, p;) is homogeneous of degree zero in p,. We



444 T. J. KEHOE AND D. K. LEVINE

do assume, however, that a is an element of an open subset A of a finite
dimensional vector space and that the following assumptions hold:

AssumptioN 1.1 (Differentiability): z,: AXRY, > R" is a smooth function.
AssumpTiON 1.2 (Homogeneity): z, is homogeneous of degree zero in a and p,.

Let g=(p, Bp) be the steady state after the shock. We make the following
assumption.

AssUMPTION 1.3 (Steady state): There exists a,#0 such that zy(ae, p)+
y(p, Bp) =0.

In other words, when a = a, we are at a steady state. Our goal is to analyze what
happens when ||a — a,|| is small. Various interpretations of this assumption are
possible: Prior to t =0 the economy was at or near a steady state and a temporary
shock displaced it. Alternatively, a permanent shock occurred and the steady
state itself was slightly displaced. All that is necessary is that there be some steady
state nearby.

To analyze the impact of the shock, observe that prices ( p,, p,) are determined
by Condition E.l. Using the homogeneity of z,, we can linearize E.l1 around the
steady state to find

(4.1) (Dyzo+ D, y)p,+ D zpa + D,yp, =0.
R.1 implies that we can solve (4.1) for p, as
(4.2) P2:D2J’_‘(Dlzo+ Dl)’)Pl'*‘Dzy_lDzZoa,

or, introducing, as before, q, = (py, p2),

I
(4'3) ql:L[a]:[ (zl -! ][a]‘
Pi —D,y” Dyzg —D,y” (D,zo+ D,y) ILp:

Let U, < RY. denote the natural projection of U onto its first n coordinates.
The implicit function theorem implies that in a neighborhood of the steady state
we get a corresponding solution to the nonlinear equation E.1, q,=[(a, p)),
defined for p,e U,, a€ A, with DI(a,, p) = L. We ask whether, for given ac A,
there is a unique initial q, = (p;, p,) that satisfies E.l and has an extension to a
price path {q,, ¢, ...} in U that satisfies E.2 and converges to some point on the
steady state ray. The results of the last section imply that the corresponding
mathematical question is whether, for given a, there is unique p, such that
I(a,p) e W,

Let us consider the linear problem first. For fixed ac A (4.3) defines an n
dimensional affine subspace of R*". The linearized version of W, is V,, which is
n®+1 dimensional. We would expect, in general, that these spaces intersect in
an n+(n°+1)—2n=n°+1—n dimensional linear space. Suppose, in fact, that
L satisfies the following assumption:
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AssumMpTION IR.1: L has rank 2n.

Note that this requires that A be at least n dimensional, in other words, that
there are at least n independent ways to shock the economy. The transversality
theorem of differential topology can be translated into the following result:

PROPOSITION 4.1: Let S, denote the set of p, € U, such that l(a, p,) € W,. For
almost all a € A the set S,, if it is nonempty, has dimension n*+1—n.

In other words, what we expect in general of the linear system is almost always
true of the nonlinear system. Here we use almost all to mean an open dense
subset of A whose complement has measure zero. If n*+1—n <0, this means
there is no p, € U, with I(a, p;) € W,. If n+1—n>0, however, S, can either have
this dimension or be the empty set. 1.2 implies that S, is nonempty. If we can
ensure that / is transversal to W, at g, then the structural stability of transversality
would imply that S, is nonempty for all a close enough to a,. We make the
following assumption:

AssUMPTION IR.2: The 2n X(n+1+n°) matrix

I :
_ lq vy ... v,,s]
[—Dzy (Dazo+Diy) |

has full row rank whenever n+ 1+ n®=2n where g, v,, ..., v,s are the eigenvectors
of G that span V..

The first n columns of this matrix span the tangent space of the manifold of
vectors g, that satisfy q, = I(a, p,). The final n°+1 columns span V,, which is the
tangent space W,. For n*+1—n =0 this says that / is transversal to W, at gq.

Like our previous regularity conditions, Assumptions IR.1 and IR.2 are generic:
Given a y that satisfies R.1, these conditions can easily be shown to hold for
almost all z,. Under Assumptions IR.1 and IR.2, we can distinguish three cases:

(i) n®*<n-—1. In this case, for almost all a, S, is empty. In other words, there
are no stable paths locally. We call such a (p, Bp) an unstable steady state. For
most initial conditions the asymptotic behavior of the system is to not reach the
steady state. Such steady states are not very interesting; they are unreachable.

(ii) n*=n—1. In this case, locally stable equilibrium paths are locally unique
and, in a small enough neighborhood actually unique. This is the case where we
can do comparative statics and in which perfect foresight is a plausible description
of behavior. This is called a determinate steady state.

(iii) n* >n—1. In this case there is a continuum of locally stable paths. The
steady state is indeterminate. Comparative statics is impossible and perfect
foresight implausible.

There are large sets of economies (nonempty open sets of economies) that
have steady states of any desired type: unstable, determinate, or indeterminate.
Thus, none of these possibilities is in any way degenerate.
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Let us consider the argument that we get indeterminacy because we ask too
much: Because z, is not homogeneous we demand that the price level be deter-
mined by initial conditions. Is it possible that this one dimensional indeterminacy
is the only possible form of indeterminacy? No. If n*+1—n>1, S, has two or
more dimensions, implying that there is relative price indeterminacy.

Now we turn to the case of real initial conditions. The change in conceptual
experiment lies in z,: It is homogeneous of degree zero in p, and satisfies Walras’s
law pizy(a, p,) =0. Since u =0, the initial price vector must satisfy piy(p;, p,) =0.
This restriction defines a 2n — 1 dimensional manifold in some neighborhood of
the steady state (p, Bp) if (p, Bp) is a regular point of piy(p,, p.), in other words,
if (y'+p'D,y, p'D,y) does not vanish at (p, Bp). This, however, follows immedi-
ately from R.1. We call this manifold the real manifold and denote it Q. Its
tangent space at (p, Bp) is made up of the vectors (p,, p.) that satisfy (y'+
p'D,y)p,+ p'D,yp, =0. Differentiating Walras’s law with respect to p,, we estab-
lish that y'+p'D,y+ Bp'D,z =0 at ( p, Bp). Consequently, the condition defining
the tangent space of Q, can be expressed

(44)  p[-BD,z Dzy][ﬁ ] ~0.

2

The stability of the system is determined by the roots of (1/8)G. Recall that
Walras’s law implies that p'[—B8D,z D,y]G=p'[-BD,z D,y]. In other words,
(1/B)G has an eigenvalue 1/8 associated with a (left) eigenvector that is
orthogonal to the tangent space of Q,. Consequently, the root 1/ has no effect
on the behavior of the system on Q,. Outside of Q,, however, the root 1/
determines the behavior of the system. In particular, if 8 <1, no path with initial
conditions that do not satisfy p{y(p,, p.) =0 can ever approach the real steady
state.

We let 7i° be the number of roots of (1/8)G, excluding the root 1/, that lie
inside the unit circle. Because of homogeneity, including that of z,, the price
level is indeterminate and we can reduce everything by one dimension by a price
normalization. In this reduced space Q, has 2n —2 dimensions, while the initial
condition zy(a, p;)+ y(p,, p2) =0 generically determines an n—1 dimensional
submanifold. The intersection of stable manifold W, with Q, has dimension 7°.
Consequently, the intersection of the initial condition submanifold and W; has
dimensional (n—1)+ 7’ —(2n —2). Thus, there are the same three possibilities in
the real case as in the nominal case, although in the real case 0<n*<2n-2
while in the nominal case 0 < n*<2n—1. In particular, notice that, if 8>1 and
ii* = n—1, then the steady state is determinate for real initial conditions but has
a one dimensional indeterminacy for nominal initial conditions.

So far we have assumed that D,y is nonsingular at every steady state. Suppose
instead that D,y has rank k, 0< k< n, on an open neighborhood of the steady
state ( p, Bp). In this situation linearizing E.2 produces an n + k, rather than a 2n,
dimensional first order difference equation to replace (3.5). Otherwise our analysis
stays the same. In the nominal case the determinacy condition remains n°*=n-—1
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where now 0<n’<n+k—1. In the real case the determinacy condition remains
n*=n+1 where now 0<na*sn+k—2. In particular, if k=1, only a one
dimensional indeterminacy is possible in the nominal case, and no indeterminacy
is possible in the real case.

That D,y has rank one at a steady state where n=2 is true only for a closed,
nowhere dense set of economies; it is a degenerate situation. Yet, if each gener-
ation consists of a single, two-period lived consumer who has an intertemporally
separable utility function, then both D,y and D,z have at most rank one. That
D,z has rank one implies that n — 1 of the n+ k= n+ 1 eigenvalues are zero. The
determinacy conditions for an economy of this type are therefore the same as
for an economy with only one good in every period. This has been noted by
previous authors: Balasko and Shell [2], who assume consumers with Cobb-
Douglas preferences, and Geanakopolos and Polemarchakis [17]. A more com-
plete discussion of these issues can be found in Kehoe and Levine [21].

It might be conjectured that in the case where excess demand is derived from
consumer optimization over well behaved preferences that the Pareto inefficiency
of paths is related to the inceterminacy of equilibrium. A moment’s reflection
on the real case shows this is .10t true. If 8 <1, prices along paths converging to
the steady state decline exponentially in the limit; this means that the value of
every agent’s endowment is finite, and, by a standard argument due to Debreu
[11], all these paths are efficient. But 8 <1 implies only that no path with u #0
ever approaches the real steady state; it places no restriction on 7’ Thus if n> 1
indeterminacy is possible. Conversely, if 8> 1, then an argument due to Balasko
and Shell [2] implies that all convergent paths are inefficient, but there is still no
restriction on the possible types of steady states.

Perhaps the case B <1 is the most puzzling of all: Here if n =2 we can have
indeterminacy among equilibria converging to the steady state, yet all these paths
are Pareto efficient and all mimic the finite dimensional case in that Walras’s law
is satisfied even by the initial generation.

We conclude this section by noting that there are six possible types of steady
states: real or nominal, each of which may be unstable, determinate, or indetermin-
ate. If there are two or more goods each period then there are open sets of
economies with each possible combination. The case with one good each period,
which has been studied most extensively, is exceptional however: Instability is
impossible and, in the real case, indeterminacy is also impossible.

5. FORECASTING

In this section we examine the case of nominal initial conditions in more detail.
We again focus on the neighborhood of a stable steady state (p, Bp) with
n*=n-—1, and we assume that all regularity conditions are satisfied. Our focus
is on how agents forecast future prices. One possibility is that they use the dynamic
equation E.2; equivalently, they forecast q,., = g(q,). Note that unless n*=2n—1
this is actually an unstable dynamical system: Small perturbations can cause the
path to depart from the steady state.
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We now investigate the alternative possibility that traders forecast future prices
solely as a function of current prices. This type of closed-loop forecasting leads
to convergence to the steady state. Surprisingly, it also is locally determinate:
This restriction on forecasting rules is sufficient to eliminate much of the indeter-
minacy we found in the previous section, making local comparative statics
possible. Not surprisingly, such forecasting is impossible when the steady state
is unstable. Here we only examine nominal initial conditions to keep the presenta-
tion as simple as possible; an analogous analysis can be done for real initial
conditions.

A closed-loop forecast rule is a function p,., =f(p,) that gives prices next
period as a function of current prices. We assume that f satisfies the following
assumptions:

AssumptioN F.1 (Differentiability): fis a smooth function defined on an open
cone U, < RY, that contains the steady state relative prices p.

AssumrpTtioN F.2: f(p)=Bp.
AssumpTtioN F.3 (Homogeneity): fis homogeneous of degree one.
AssumpTION F.4 (Perfect foresight): z(p, f(p.)+y(f(p.), f7(p.))=0.

AssumpTioN F.5 (Convergence): lim,.of (p)/ |/ (p)I=p/lp| for all p,e
U‘l-

Here, for example, f(p) denotes f(f(p)). Assumption F.2 insists that at the
steady state the forecast rule pick out the steady state. F.4 is the perfect foresight
assumption: If forecasts are realized, markets indeed clear. Assumption F.5 says
we are interested only in forecast rules that permit convergence to the steady
state, in other words, are stable.

We begin by asking whether, for n® = n — 1, there actually exists a forecast rule
that satisfies Assumptions F.1-F.5. As before, we consider the linearized problem
first. To construct a forecast rule we choose v,,..., v,_;, q to be independent
eigenvectors in V,, the stable subspace of the linearized system. It is important
that we be able to choose vy, ..., v,_, so that complex vectors appear in conjugate
pairs. This can always be done if n—1 is even. It can also always be done if
n®*=n—1 since v,...,v,_; includes all of the eigenvectors corresponding to
eigenvalues inside the circle of radius 8 and such eigenvectors necessarily show
up in complex conjugates. In the peculiar case where n—1 is odd and there are
no real eigenvalues inside the circle of radius B, and hence no real eigenvectors
in V,, we cannot make this choice of vy,..., v,_;. This is no accident: In this
case there are no stable perfect foresight forecast rules.

Let V, be the real vector space spanned by v,,..., v,_;, q; because complex
vectors come in conjugate pairs, it is n dimensional. What we suggest is, for
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given p, to choose p,., so that (p,—B'p, p.+1—B'"'p) is an element of V,,. From
the structure of g there exists a unique choice of p,.; provided that

AssumpTioN FR.1: v!,... v._,, p are independent vectors where v}, i=
1,...,n—1, consists of the first n components of the v,

If FR.1 holds, we can find a unique matrix F, which depends on v,..., v,_y,
so that

(5.1)  (p+1—B"'p)=F(p,—B'p)

is our linear forecast rule.

First we check that the linearized system (5.1) satisfies the linearized versions
of F2-F.5. Since qeV,, (p,p)eV, and, consequently, Fp=pBp. Since
vy, ..., Uyy, q are eigenvectors of G, V, is invariant under the dynamical system
G, which means that if ¢, € V,, then Gq, € V,,. Finally, since V, < V, and (p,—B8'p,
Pe1—B'"'p) € V, we must have lim,. p./ | p.| =p/| p- .

It is natural to conjecture that we can thus find an f with Df(p)=F that
satisfies Assumption F.1-F.5; this follows from Hartmann’s smooth linearization
theorem in Irwin [18, p. 117]. Because g is homogeneous of degree one, f may
also be chosen to be homogeneous of degree one. If n* =n—1, then f is unique.
This is well known when f is linear (see, for example, Blanchard and Kahn [6]).
If, however, n° > n— 1, f may not be unique nor even locally unique. Furthermore,
in the case where n—1 is odd and all the eigenvalues of G that lie inside the
circle of radius B are complex, f does not even exist. The derivative Df(p)=F
at the steady state is locally unique, however; there are only finitely many
possibilities. To see this write Assumption F.4 as (f(p,), f*(p.))=g(p, f(p.)).
Differentiating this at p we see that

52 [F]_ [T
F]_G[F]

Writing F in Jordan canonical form as F= HAH™', we see that

(53) [HAT_ [ H
_HAZ]_G[HA]'

R.2 implies that A is diagonal with diagonal entries equal to eigenvalues of G
and that the columns of

L)

are the corresponding eigenvectors of G. Since G has only finitely many eigen-
values, there are only finitely many choices of F; indeed, our original construction
is the only way to get solutions that satisfy the stability requirement F.5.
Notice that, if n*>n+1, there are in general many possible choices of
vy, ..., U,_; and, consequently, of F. The important fact is that there are only a
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finite number of choices. Furthermore, under our regularity assumptions, F

varies smoothly with small changes in the parameters of (y, z). When doing

comparative statics faced with a choice of finitely many forecast rules, we choose

the unique F that corresponds to the forecast rule being used before the shock.
Finally, let us check the initial condition; it is now

(5.4) zo(a, p)+y(p1, f(p1)) =0.

We can locally solve for p; as

(5.5) pi=—(Dyzo+ D,y + D,yF) ™' D, zpa.

6. CONCLUDING REMARKS

We conclude by summarizing our results and indicating some possible direc-
tions for future research. When there are finitely many infinitely lived consumers
we have shown equilibria are generically determinate. In the overlapping gener-
ations case we have argued that determinacy, indeterminacy, and instability are
all possible for a wide range of economies.

There are a number of obvious differences in the specifications of these two
models and in the conceptual experiment that we have performed on them. We
should not, however, let these differences, which are actually more superficial
than substantive, obscure the striking contrast in the two sets of results. One
obvious difference in the specification of the two models is that in the first
consumer behavior is specified in terms of utility functions and endowments
while in the second it is specified in terms of aggregate excess demand. As we
have explained, however, the results of Mantel [24], Debreu [14], and Mas-Collell
[27] justify using the concept of aggregate excess demand in the overlapping
generations model: As long as the number of consumers in each generation
exceeds the number of goods, in this case 2n, then all that utility maximization
implies about aggregate excess demand is given by Assumptions A.1-A.4. In other
words, we could have derived the same results for the overlapping generations
model if we had specified it in terms of utility functions and endowments; we
have employed the excess demand formulation only because it is more convenient.
In the model with a finite number of infinitely lived consumers, however, the
Mantel-Debreu theorem does not hold: There are more goods than consumers.
Reducing the dimension of the problem of characterizing equilibria to the number
of consumers, a finite number, is the crucial step in our arguments. It is, in fact,
an open question whether a model with an infinite number of infinitely lived
consumers generically has determinate equilibria.

A very restrictive aspect of our specification of the model with infinitely lived
consumers is that utility is additively separable and discounted at a constant rate.
This implies, for example, that, if all consumers do not have the same discount
factor v, then those with discount factors less than the maximum asymptotically
consume nothing. We conjecture, however that our results carry over to models
with far more general preferences; it would be worthwhile to verify this.
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We should point out that the determinacy results in the model with infinitely
lived consumers are in no way related to the determinacy results obtained for
the overlapping generations model with a single consumer with additively separ-
able utility in each generation: The latter results depend crucially on the assump-
tion of a representative consumer while the former do not. It would certainly be
useful, however, to know that indeterminacy in the overlapping generations model
can arise not only for an open set of economies, but for economies with reasonable
preferences. One step in this direction is taken by Kehoe and Levine [20], who
illustrate all the possibilities of determinacy, indeterminacy, and instability in
an economy where each generation is a single three-period lived consumer
with constant-elasticity-of-substitution utility. A more general characterization
of the eigenvalues in terms of assumptions on preferences would also be worth-
while.

Another obvious difference in the specifications of the two models is the concept
of equilibrium: In the model with infinitely lived consumers we allow general
price paths while in the overlapping generations model we restrict our attention
to paths that converge to a steady state. This should not weaken the contrast in
the results for the two models, however, since indeterminacy of the more restricted
concept of equilibrium implies indeterminacy of the general concept. Our analysis
of equilibria in the overlapping generations model can be applied to equilibrium
price paths that converge to cycles if we redefine generations and time periods:
A cycle of k periods can be viewed as a steady state of a model where each
newly defined generation consists of k original generations and each newly
defined time period includes k of the original time periods. If we were to analyze
the model with infinitely lived consumers using the requirements of convergence
to steady states, we would, of course, find that any equilibrium price path is
either determinate or unstable. Studying a model more general than ours, Bewley
[5] has demonstrated that, if the largest discount factor v; is sufficiently close to
unity, then all equilibria do, in fact, converge to steady states. Yet another
difference in the two models is the nature of the two conceptual experiments: In
the overlapping generations model the initial old generation may hold claims on
the endowments of the young, either nominal or real, positive or negative. In the
model with infinitely lived consumers, in contrast, all income is generated from
the sale of own initial endowments. Having nominal claims is impossible with
infinitely lived consumers. Real claims, however, are easily accommodated as
(possibly nonstationary) changes in the structure of endowments. As long as
these changes do not result in any consumer’s income becoming nonpositive at
equlibrium, our analysis follows through as before.

It might be thought that the differences in the determinacy results comes from
the requirement in the infinitely lived consumer model for some kind of transver-
sality conditions, which the overlapping generations model does not have. This
is not the case, however. All that the transversality conditions would guarantee
in the overlapping generations model is that lim,.. p, =0. This obviously pre-
cludes equilibria with fiat money. It also guarantees Pareto efficiency, as Balasko
and Shell [1] have demonstrated. Since it is possible to have indeterminate
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equilibrium price paths converging to a steady state with 8 <1, however, it cannot
guarantee determinacy.

To make the differences between the two models appear even smaller, let us
point out that the model with infinitely lived agents can be thought of as an
overlapping generations model where consumers leave bequests to their offspring
or give gifts to their progenitors. Barro [4] has argued that, if the lifetime utility
levels of offspring and progenitors enter into the utility functions of each member
of an infinitely lived family of consumers, then that family acts as if it were a
single infinitely lived consumer. Although there is no general reason to suspect
that this infinitely lived consumer would have a utility function with a constant
discount factor and additive separability, it is certaintly possible to think of
specifications in which he would. One obvious problem with this kind of specifica-
tion is that, if all discount factors are not equal, then some families asymptotically
consume nothing: Consumers use almost all of their income to service the debt
of their progenitors, which they, in turn, pass on to their offspring. We have
already conjectured, however, that the determinacy results hold for more general
specifications that avoid this kind of problem.

What are the properties of a model in which some consumers leave bequests
and some do not, in other words, a model with some infinitely lived agents and
some finitely lived agents? Muller and Woodford [29] have addressed this question
using the approach we have developed here. They find that, although the presence
of infinitely lived consumers rules out equilibria that are Pareto inefficient or
include fiat money, it does not rule out indeterminacy. They also extend our
analysis to include economies with production and infinitely lived assets. They
are able to identify a number of cases where equilibria are determinate, although,
as in the model we have analyzed here, there are open sets of economies with
indeterminate equilibria.

Our results raise many interesting questions: Does the determinacy versus
indeterminacy result depend on the finite versus infinite number of agents or on
the infinite versus finite lifetimes? What mathematical properties do models with
an infinite number of infinitely lived agents possess? In the overlapping gener-
ations model we have studied the behavior of equilibrium price paths near steady
states. Is it possible to say much about their behavior away from steady states?
Throughout the paper we have assumed perfert foresight expectations. What
theoretically attractive alternatives exist? How far do we have to depart from
the perfect foresight assumption to get determinacy?
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