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2016 - Problem set 2 - Community Enforcement

Social Norms and Community Enforcement. Kandori, Review of Economic Studies, 1992

Introduction We study how communities can enforce cooperative behaviors that are not incentive
compatible in a static context (not static Nash). You can think of enforcing the cooperative outcome
of the Prisonner Dilemma when N players of a community repeatedly play the 2−player game
matched in pairs every period. But the pairs ae formed each period according to a matching rule,
and there is incomplete information with respect to the past behavior of current partners. In this
context, how to enforce cooperation?

We wish to prove here Theorem 2 of Kandori 1992 that are the basis for community enforcement
when the community is endowed with what is called ”local information processing”. We will see
deterministic local information processing.

The Set-up

Set of Players N = {1, 2, . . . , 2n}. It is partitioned in N1 = {1, . . . , n} and N2 = {n+1, . . . , 2n}.
Each player plays a stage game each period and each player’s total payoff is the expected sum of
his stage payoffs discounted by δ ∈ (0, 1).

Matching Process : µ(i, t) ≡ player’s i match at time t

In each stage, each type-1 player is matched with a type-2 player according to the matching rule
µ(., .) and they play a 2-player stage game. We impose no structure on the matching rule (can be
endogenous, history-dependent...)

Stage Game Payoffs Let Ai the finite action set of type i. Payoff function of the stage game:

g : A→ R2, with A ≡ A1 ×A2

Minimax Payoffs We define the Minimax Payoffs in the following way: The Minimax point
M1 ∈ A ≡ A1 ×A2 for type-1 players is defined:

M1
2 ∈ argmina2∈A2

[ max
a1∈A1

g1(a1, a2)]

M1
1 ∈ argmaxa1∈A1

[g1(a1,M
1
2 )]

It means: player 2 wants to minimize the payoff of player 1, but knows that, whatever he does,
player 1 will maximize, given the action chosen by player 2. Taking this into account, player 2
chooses the action that will minimize player 1’s payoff, regardless of the impact on his own payoffs
(it can hurt him too). Consequently, player 1 maximizes, given player 2’s action.

• Mutual minimaxing point:
(
M2

1 ,M
1
2

)
≡ m ≡ (m1,m2). So here, nobody is best-responding,

they mutually minimize each other.

• Normalization: g1(M1) = g2(M2) = 0

Set of Payoffs

V ≡ {v ∈ cog(A)|v >> 0}

(cog(A) is the convex hull of g(A)).
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Information Structure (Section 5 of the paper)

Definition 1 A matching game with local information processing has the following information
structure.

1. A state zi(t) ∈ Zk is assigned to player i ∈ Nk (k = 1, 2) at t.

2. When player i and j meet at time t and take actions (ai(t), aj(t)), their next states are
determined by

(
zi(t+ 1), zj(t+ 1)

)
= τ

(
zi(t), zj(t), ai(t), aj(t)

)
3. At t, i can observe at least (zi(t), zµ(i,t)(t)) before choosing his action.

Equilibrium Concept: Sequential Equilibrium (Kreps & Wil-
son 1982)

Let Ht−1 the set of all possible histories of play up to t − 1. We are in a game of incomplete
information, therefore players don’t observe the full past history and they each observe different
actions: they have private information. Let Hi,t−1 the set of all possible histories of play up to t−1
in the information set of player i.

A belief assesment is a sequence µ = (µi,t)t≥1,i∈N with µi,t : Hi,t → ∆(Ht), that is, given the
private history hi of player i, µi,t(hi) is the probability distribution representing the belief that
player i holds on the full history.

A (pure) strategy for player i is:

σi : ∪t≥0 Hi,t → Ai

(Here I refer to the generic action set of a player i, Ai. In our game, the action set is the same
for all the players of a same type). That is, at each possible history of i’s private information set,
we have to define an action, be it a history on or off the equilibrium path.

A Sequential Equilibrium of the repeated game is a pair (σ, µ) where σ is a strategy profile
(σ = ×i∈Iσi) and µ is a belief assesment such that: 1) for each player i and each history hi ∈
∪t≥0 Hi,t, σi is a best reply in the continuation game, given the strategies of the other players and
the belief that player i holds regarding the past; 2) the beliefs must be consistent ”in the sense of
Kreps-Wilson” (I don’t define it here because we will not need it and I refer you to the KW (82)
paper for more details).

However, Kandori wants to find equilibria that have some ”nice” properties, among which:

Definition 2 A sequential equilibrium in a matching game with local information is straightfor-
ward if, given that all other players’choice of actions depends only on their and their partners’
labels, a player best response also depends only on his and his partner’s labels, even if he had more
information than those:

ai(t) = σi(zi(t), zµ(i,t)(t)) ∀i ∈ N

Theorem 2

Assumption 3 ∃r ∈ A such that:

g1(m1, r2) > g1(m) ≥ g1(r1,m2)

g2(r1,m2) > g2(m) ≥ g2(m1, r2)
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Theorem 4 (2) Under the previous assumption, every point v ∈ V is sustained by a straight-
forward and globally stable equilibrium with local information processing, if δ ∈ (δ∗, 1) for some
δ∗, which is independent of the matching rule and the population size. Furthermore, only
3 actions are prescribed to each player.

Let v ∈ V , and let a∗ the action profile to achieve the payoff v.

Candidate Equilibrium We study the following candidate equilibrium.

State Space (that is, the set of possible labels for each type of player)

Z1 = Z2 = Z = {0, 1, . . . , T}

where 0 means ”innocent” and any other label means ”guilty”.

Individual Strategy (symmetric within types k = 1, 2). If two innocent players are matched,
they choose the designated action a∗. If two guilty players meet, they mutually minimax each
other. If an innocent player encounters a guilty player, the former minimaxes the latter but the
latter chooses the ”repenting” action r defined in (Al).
∀z ∈ Z × Z

σ(z) =


a∗ if z = (0, 0)
(m1, r2) if z1 = 0, z2 6= 0
(r1,m2) if z1 6= 0, z2 = 0
m if z1, z2 6= 0.

State Transition The state transition obeys a simple rule; any deviation starts a T -period
punishment. For type 1 players:
∀z ∈ Z × Z,∀a ∈ A

τ1(z, a) =

 0 if z1 = 0 and a1 = σ1(z)
z1 + 1 ( mod T + 1) if z1 6= 0 and a1 = σ1(z)
1 if a1 6= σ1(z),

(symmetric for type-2 players).

Remember the definition of sequential equilibrium, we have to check that strategies are optimal
∀hi,t ∈ Hi,t,∀t,∀i.

Incentives when type-1 is guilty We start in period t, t = 1, 2, . . . . from any possible history,
where player i is guilty (that is zi(t) > 0).

Question 1 Assume player i of type 1 has a guilty label. Given that we start from any ht−1 ∈
Ht−1 such that zi(t) > 0, we cannot impose anything on the other players labels. Assuming that
all the other players follow the equilibrium strategies, can you tell what will be the share of guilty
type 2 players at t+ T?

Give a lower bound V g on player i’s continuation payoff as a function of v1 (the payoff that the
candidate equilibrium aims at sustaining) and x(t) defined in the following way:
∀t = 1, 2, . . . ,∀i = 1, 2, . . . , n

x(t) =

{
g1(m) if zµ(i,t)(t) 6= 0
g1(r1,m2) if zµ(i,t)(t) = 0

when he sticks to the equilibrium strategy.

Question 2 Give a upper bound V̄ gD on player i’s continuation payoff as a function of v1,
g(.),m, r, if player i deviates once from equilibrium play when guilty. (Remember the Principle of
Dynamic Programming (Abreu 1988) that says that we only have to check one-shot deviations).

Question 3 Write the Incentive Compatibility Constraint for the Guilty player
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V g ≥ V̄ gD (ICg)

(that is, the worst he can do by sticking to equilibrium play is better than the best he can do
by deviating) and prove that a sufficient condition for (ICg) to hold is:

(1− δT )g1(r1,m2) + δT v1 ≥ 0 (∗)

Incentives when type-1 is innocent We start in period t, t = 1, 2, . . . . from any possible
history where player i is innocent (that is zi(t) = 0).

Question 4

Give a lower bound V I on player i’s continuation payoff as a function of v1, g(.),m, r and v∗1
with

v∗1 = max
a∈A

g1(a)

when he sticks to the equilibrium strategy.

Question 5 Give a upper bound V̄ ID on player i’s continuation payoff as a function of v1,
g(.),m, r, if player 1 deviates once from equilibrium play when Innocent.

Question 6 Write the Incentive Compatibility Constraint for the Innocent player

V I ≥ V̄ ID (ICI)

Finding δ∗ and T Note that if we find a δ∗ and a T independent from the matching rule and
the population size, we have proved that our candidate equilibrium is a sequential equilibrium of
the local information processing game.

Question 7 Satisfying (∗). What is the sign of g1(r1,m2)? And of v1? Considering the LHS

of (∗) as a function of δT , can you say if this function is increasing? Decreasing? What happens
when δT → 1? Can (∗) be satisfied for some δT ?

Question 8 Prove that keeping δT constant but increasing δ, we can find a δ such that (ICI)
is satisfied. Call it δ∗. Does it depend on the matching rule? On the population size?

Question 9 (complementary) Is the equilibrium straightforward? is it globally stable?
Remember the definition:

Definition 5 An equilibrium sustaining payoffs v ∈ V is globally stable if for any given finite
history of actions h,

lim
t→∞

E(vi(t)|h) = vk, ∀i ∈ Nk, k = 1, 2

where vi(t) is player i’s continuation payoffs at t and E(.|h) is the conditional expectation.


