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1. Introduction

The modern theory of the evolution of conventions deals with a Markov process in which there

are strong forces such as learning towards "equilibrium" and weak "evolutionary" forces such as

mutations that disturb an equilibrium and lead from one equilibrium to another. To prove theorems,

the limit as the weak forces approach zero is analyzed. In the limit itself equilibria appear as

irreducible classes of the Markov process: sets of states all of which are accessible to each other,

but grouped into classes which are isolated from each other. Near the limit - the situation of interest

- the Markov process is ergodic, and puts positive weight on all states. However some states are

more equal than others, and in the unique limit of the stationary distributions weight is placed only

on the irreducible classes of the limit - and moreover, only some of these classes have positive weight

- the stochastically stable classes. In particular, while the limiting Markov process can have many

equilibria, the limit of the Markov processes may place weight on only one or a few equilibria. The

literature, especially Kandori, Mailath and Rob (1993), Young (1993) and Ellison (2000), develops

a set of techniques for determining which of these equilibria get weight in the limit, and gives a

useful picture of what the stochastic process looks like when the weak forces are small but not zero.

Roughly, one observes the equilibria that have positive weight in the limit most of the time, but

there will inevitably be interruptions in which the system moves temporarily out of equilibrium and

back again, and also transitions in which movement takes place from one equilibrium to another.

The focus of the existing literature has been on determining which equilibria get weight in

the limit - and this is important to understand. But the transitions - the movement from one

equilibrium to another - are also interesting and important for economics. For example: in a

model of evolution such as that of Levine and Modica (2013) where di�erent economic and political

institutions compete with each other the irreducible classes correspond to hegemonies - a single

society that controls all economic resources - and the stochastically stable classes are the most

powerful hegemonies. There is considerable historical evidence for the existence of hegemonies:

China, the Roman Empire and so forth. In the theory - as in reality - these hegemonies inevitably

fall. How the fall takes place - the transition - is of some interest. Do the eventual winners of the

con�ict appear on the scene and battle back and forth with the hegemony for a while until they

take over and establish their own hegemony (short answer - no) or does something else happen,

and if so what?

The mathematical methods used in analyzing stochastic stability contains clues for what the

transitions might look like. In particular, stochastically stable classes can be characterized by

trees of irreducible classes where the distance between classes is measured by "resistance" and the

stochastically stable classes appear as the root of least resistance trees. Because of the role played

by least resistant paths in this analysis, a natural conjecture is that least resistant paths are in

some sense more likely than higher resistant paths. The goal of this paper is to establish in exactly

what sense this is true.
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The starting point is to observe that a basic feature of resistance is that if we compare the

probability of two paths when evolutionary forces are very weak, the lower resistance path is far

more likely than the higher resistance path. If we are interested, however, in all the paths between

one irreducible class and another, though, the problem is that there are typically many more high

resistance paths than low resistance paths. For example, if there is resistance to an invader gaining

a piece of land, there are many paths in which the land is lost and regained - which has fairly

high resistance, but very few in which it is taken only once and not subsequently lost. Moreover,

there is a sense in which over a longer time horizon the relatively more numerous are the high

resistant paths than the low resistance paths. If the transition takes quickly, there is not much

opportunity for dawdling around losing and regaining land. If it takes place slowly then there are

many possibilities for doing so.

Consider then more speci�cally the set of �direct� paths that lead from one irreducible class

to another - without, however, passing through a third class.3 When evolutionary forces are weak

least resistant paths are far less likely than higher resistant paths. The reason for this is simple: it

is likely to take a very long time to reach another irreducible class - in the meantime there are likely

to be many failed attempts to get there, and these attempts will typically involve some resistance.

On the other hand, if we look at the set of paths that have least resistance only after the path

leaves the irreducible class for the �nal time, the transition to the other class is likely to happen

relatively quickly and we are able to show that these paths - which describe the transition process

itself - are far more likely than other paths.

We establish the theory in two parts. We �rst develop a set of bounds for direct paths and then

for quasi-direct paths, which may linger in an irreducible class for some time before moving on. To

illustrate the theory, we apply it to a simpli�ed version of the Levine and Modica (2013) evolutionary

model of con�ict and the emergence of hegemonies - some details of which are motivated by the

transition theory of Acemoglu and Robinson (2001) - illustrating the theory with an account of the

fall of the (last) Qing dynasty in China.

Finally, understanding transitions gives us clues about the ergodic probabilities. By examining

which irreducible classes are reached �next� from a given starting point we construct a straightfor-

ward recursive algorithm that gives precise bounds on the ratio between the ergodic probabilities

of all states that are �reasonably close� to irreducible classes.

2. An Illustrative Example

We are interested in economic models that can be represented as Markov processes where some

transitions are much less likely than others. To illustrate this we start with an example of a

�standard� evolutionary model. Consider the 2x2 symmetric coordination game with actions G,B

and payo� matrix

3From Ellison (2000) we know that such paths are not necessarily the quickest way of getting to the target, an
issue we carefully account for.
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G B

G 2, 2 0, 0

B 0, 0 1, 1

This game has two pure Nash equilibria atGG and BB and a mixed equilibrium with probability

1/3 of G.

To put this in an evolutionary context, we assume that there are �ve players and that the state

of the system is the number of players playing G, so that the state space Z has N = 6 states.

Each period one player is chosen at random to make a move. We �rst de�ne the �behavior rule�

or �deterministic dynamic� representing �rational� learning: the player whose gets to move chooses

a best response to the actions chosen by the opposing players. In addition there are independent

trembles: with probability 1− ε the behavior rule is followed, while with probability ε the player's

choice is uniform and random over all possible actions. The presumption is that the chance of

�arational� play ε is small compared to the probability 1− ε of �rational� play.
This dynamic can be represented as a Markov process on the state space Z de�ned above with

six states representing the number of players playing G. Denoting source states by rows and target

states by columns as is standard in the theory of Markov chains, the transition matrix can be

computed as

Pε =



1− ε
2

ε
2 0 0 0 0(

1
5 −

ε
10

) (
4
5 −

3ε
10

)
4ε
10 0 0 0

0
(

2
5 −

2ε
10

)
ε
2

(
3
5 −

3ε
10

)
0 0

0 0 3ε
10

(
3
5 −

ε
10

) (
2
5 −

2ε
10

)
0

0 0 0 4ε
10

(
4
5 −

3ε
10

) (
1
5 −

ε
10

)
0 0 0 0 ε

2 1− ε
2


The situation then is as follows. When ε = 0 there are two irreducible classes consisting of

the singleton sets {0}, {5} - these sets are each absorbing. We denote the set of irreducible classes

corresponding to ε = 0 and the transition matrix P0 by Ω = {{0}, {5}}. They are the pure Nash

equilibria of the game. The set of points for which the probability of eventually reaching {0} is one
- the basin of {0} - consists of the points {0}, {1}. The basin of {5} is {3}, {4}, {5}. The state {2}
is in the �outer basin� of both {0} and {5}: it has positive probability of reaching either of the two

irreducible classes.

We are interested, however, not in ε = 0 but in ε positive but small. In this case we can talk

about what happens �typically� or �most of the time� meaning in the limit as ε → 0. From the

earlier results of Young (1993) we know that the system will spend most of its time at {5}.4

4Because this system has a special property (the radius of {5} greater than the co-radius) the waiting times are
also known from Ellison (2000). The waiting time from {0} to {5} is roughly ε−2 while the waiting time from {5}
to {0} is roughly ε−3. In addition, because the process is a special kind of chain known as a birth-death process, the
ergodic distribution may be computed directly to derive some of the following results.
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When applied to this example the results of the present paper will give the following additional

information on the dynamics of the system:

1. When the transition from {0} to {5} takes place typically once the state {2} is reached, there
is no return to the state {1} and the transition is very fast.

2. When the transition from {5} to {0} takes place typically the states {4}, {3} are reached in

that order and once the state {3} is reached there is no return to the state {4} and once {2}
is reached there is no return to the state {3} and the transition is very fast.

3. Starting at {0}, before {5} is reached the system will spend most of the time at {0} but will
many times reach the state {1} for brief periods

4. Starting at {5}, before the state {0} is reached the system will spend most of the time at {5}
but will many times reach the states {4}, {3} for brief periods

5. The state {4} will occur roughly as often as the state {0} but while {0} will be seen for long

stretches of time, the state {4} will be seen frequently but only brie�y before reverting to

{5}.

3. The Model and the Result for Direct Routes

In the general case we are given a �nite state space Z with N elements and a family Pε of

Markov chains on Z indexed by 0 ≤ ε < 1. This family satis�es two regularity conditions:

1. limε→0 Pε = P0

2. there exists a resistance function 0 ≤ r(x, z) ≤ ∞ and constants 0 < C ≤ 1 ≤ D < ∞ such

that Cεr(x,z) ≤ Pε(z|x) ≤ Dεr(x,z)

In the illustrative example, the resistances can be computed from the Markov transition matrix as

r =



0 1 ∞ ∞ ∞ ∞
0 0 1 ∞ ∞ ∞
∞ 0 1 0 ∞ ∞
∞ ∞ 1 0 0 ∞
∞ ∞ ∞ 1 0 0

∞ ∞ ∞ ∞ 1 0


As in the example, we let Ω be the union of the irreducible classes of P0. We write Ω(x) for the

irreducible class containing x where Ω(x) = ∅ if x is not part of an irreducible class. A path a is a

�nite sequence (z0, z1, . . . , zt) of points in Z and we write t(a) for the number of transitions in the

path. The resistance of the path r(z0, z1, . . . , zt) ≡ r(z0, z1) + r(z1, z2) + . . . + r(zt−1, zt) with the

convention that for the trivial path with t(a) = 0 then r(a) = 0.

We summarize some well known properties of P0 and Ω. Non-empty irreducible classes Ω(x) 6= ∅
are characterized by the property that from any point y ∈ Ω(x) there is a positive probability path

to any other point z ∈ Ω(x) and that every positive probability path starting at y must lie entirely

within Ω(x). Since positive probability in P0 is the same as zero resistance, we may equally say
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that from any point y ∈ Ω(x) there is a zero resistance path to any other point z ∈ Ω(x) and that

every zero resistance path starting at y must lie entirely within Ω(x).

An additional useful notion is this: de�ne a set W to be comprehensive if for any point z ∈ Z
there is a positive probability (zero resistance) path to some point in W . In particular the set Ω is

comprehensive. We can give the following characterization of a comprehensive set:

Proposition 1. A set W is comprehensive if and only if it contains at least one point from every
non-empty irreducible class.

Proof. Su�ciency: for any point z ∈ Z there must be a zero resistance path to some point y in
some irreducible class Ω(y). By assumption there must be a point w ∈W ∩Ω(y), and there is a zero
resistance path from any point in Ω(y) to any other, hence from y to w. Hence the path from z to y
and continuing on to w has zero resistance. Necessity: if there is a set Ω(y) 6= ∅ with Ω(y)∩W = ∅
then the zero resistance path to W assumption fails: any zero resistance path originating in Ω(y)
must remain entirely within Ω(y) and hence does not reach W .

3.1. The Concept of Direct Routes

We now de�ne a forbidden set W for a path a to be a set that the path does not touch

except possibly at the beginning and end. Given an initial point x ∈ Z with Ω(x) 6= ∅ and sets

W ⊆ Z and B ⊆ W , we call a non-trivial path from x to B with forbidden set W a direct route

if W is comprehensive and the path has positive probability for ε > 0. Then for each x,B and

comprehensive W there is a set A(x,B,W ) of direct routes from x to B with forbidden set W . 5

To motivate these de�nitions and our subsequent results, consider the problem of moving - not

necessarily directly - from one non-empty irreducible class Ω(x) to a di�erent non-empty irreducible

class Ω(y). If ε = 0 this is impossible. For ε > 0 it may be possible. However, in order to leave

Ω(x) to get to Ω(y) at some point the path must leave Ω(x) and then hit some point in Ω, say a

point in Ω(z) (where it may be that z = y). That is, at some point, there must be a direct route

from some point x′ ∈ Ω(x) to some set B = Ω(z) with forbidden set W = Ω. The fact that W = Ω

just re�ects the idea that after leaving x′ there is no return to Ω(x) until Ω(z) is reached, and that

the �rst point in Ω that is reached is a point in Ω(z). Such paths are improbable, yet they are

important as they are needed to move from one irreducible class to another.

An intuition for why direct routes have particular stochastic properties is this. In P0 a path

that hits a point in an irreducible class is then trapped in that class, so cannot reach a target

outside of that class. As we noted, when ε > 0 this need not be the case. However, if a point in an

irreducible class is hit then it is very likely that the path will then linger in that irreducible class

passing through every point in the class many times. Hence there is a sense in which paths that

do not hit a comprehensive set are �quick� - they cannot linger in an irreducible class for if they

did so they would have to hit every point in the class many times, thus touching W . By contrast

if W were not comprehensive, then paths not passing through W could linger in an irreducible

5The assumption that B ⊆ W is without loss of generality. We can always de�ne a forbidden set W ′ = W ∪ B
without changing the set of direct routes.
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set for a long time. Direct routes are a bit like the hare in the story of the tortoise and the hare.

Direct routes get to the destination quickly - they must if they are not to fall into the forbidden

set. Because of this, as Ellison (2000) points out, they are not very reliable: routes that linger in

an irreducible class may be far more likely than direct routes to reach their destination.

We are interested in the following questions: how likely is the set of direct routes A(x,B,W ),

which paths in A(x,B,W ) are most likely, what are these paths like and how long are they? There

are two uses of these results: �rst, they are useful tools that we will use to analyze interim dynamics

in subsequent sections. Second, they provide insight into interim dynamics in some special cases.

To illustrate the usefulness of the concept of direct routes and its limits in analyzing interim

dynamics we consider two examples where x is a singleton irreducible class, that is Ω(x) = {x}. In
the �rst we take B = Ω\Ω(x) and W = Ω; then the direct routes are the paths that leave x and hit

a di�erent irreducible class without returning to x. If we think of irreducible classes as �equilibria�

then A(x,B,W ) represents transitions paths from one equilibrium to some another. Hence we are

asking how likely is it that we go to another equilibrium, which are the most likely routes to another

equilibrium, and how long does it take to get there? In the other example y /∈ Ω(x),Ω(y) 6= ∅,
and B = Ω(y),W = Ω; then A(x,B,W ) is the set of the paths that leave x and hit Ω(y) without

�rst returning to x or hitting any other irreducible class. Now suppose we are interested in the

question: what are all the possible routes (not necessarily direct) from x to B which do not return

to x before hitting B. In the former case all such routes are direct routes - hence analysis of direct

routes is su�cient. In the second case an analysis of direct routes is not su�cient because there

are routes that are not direct - those which hit some point of Ω \ Ω(y) ⊆W before �rst hitting B.

There are two other important examples involving {x} = Ω(x) 6= ∅. First take what Ellison

(2000) calls the basin of Ω(x), that is the set of points B(x) in Z for which there is a zero resistance

path to Ω(x) and no zero resistance paths to Ω\Ω(x). Or what amounts to the same thing, the

set of points for which there is probability one in P0 of returning to Ω(x). We may then consider

B = Z\B(x),W = B ∪ {x}. In this case A(x,B,W ) are the paths that leave the basin of Ω(x)

without �rst returning to x. We can also de�ne the outer basin of Ω(x) as the set of points B+(x)

for which there a zero resistance path back to Ω(x). In this case Z\B+(x) represents the basins of

irreducible classes other than Ω(x). Then we may be interested in B = Z\B+(x),W = B ∪ {x}.
In this case A(x,B,W ) are the paths that hit the basins of other irreducible classes without �rst

returning to x.6

3.2. Results on Direct Routes

The intuition behind the results we present next is simple. Direct routes must hit the target

without falling into a comprehensive set. This is hard, hence these routes have to be quick - and

the quickest way is to make least resistance steps. This will be made precise in the following.

First, since we have not assumed that Pε is ergodic - to avoid triviality, we assume that

6Note that although in the examples x /∈ B we do allow x ∈ B. This enables us to analyze paths that leave x and
subsequently return to x which is useful in proving subsequent results about interim dynamics.
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A(x,B,W ) 6= ∅. An important observation is that there are typically many direct routes. Speci�-

cally, if there exists some z, z′ /∈ W ∪ {x} with r(z, z′) <∞ then A(x,B,W ) is countably in�nite.

An important fact proven in Appendix 1 is that if A ⊆ A(x,B,W ) then r(A) = mina∈A r(a)

is well-de�ned (and �nite) - it is the least resistance of any path in the set A. We also de�ne

t(A) = min{t(a)|a ∈ A, r(a) = r(A)} to be the minimum number of transitions of any least resis-

tance path in the set A.

The main result on direct paths characterizes their probability and length in terms of r(A), t(A),

for A ⊆ A(x,B,W ). Proof is in Appendix 1.

Theorem 1. There are constants D1(r), D2(k, r) with C ≤ D1(r), D2(k, r) <∞ such that Ct(A)εr(A) ≤
Pε(A|x) ≤ D1(r(A))εr(A); and E[tk(a)|x,A] ≤ D2(k, r(A))/Ct(A).

In particular, positive resistance direct routes are not very likely to occur as ε gets small, yet

they are unlikely to be terribly long in the sense that the moments of the length are bounded

independent of ε. Intuitively, at each point along a direct route there is a zero resistance path that

leads to the forbidden set W. The more time spent along the route, the greater the danger that

the path will fall into the forbidden set and fail to reach its destination. By contrast, we will see

subsequently that the expected time spend in an irreducible class goes to in�nity as ε→ 0.

The probability bounds in Theorem 1 directly imply the two other facts characterizing direct

routes.

Corollary 1. Let A = {a|r(a) = r(A(x,B,W ))} denote the least resistance paths in A(x,B,W ) 6=
∅. Then limε→0

Pε(A|x)
Pε(A(x,B,W )\A|x) =∞.

In other words, least resistance direct paths are far more likely than other direct paths. Applying

this to the illustrative example yields facts (1) and (2) concerning transitions between the ergodic

sets {0} and {5}: by Theorem 1 these transitions are likely to be short, and typically of least

resistance. Moving from {0} to {5} a least resistance path must hit {1} and while it may remain

at {1} it must not return to {0} before hitting {2} - because going from {0} to {1} would add

resistance to the transition. For the same reason, once {2} is hit the path may not return to {1}.
Similarly in moving from {5} to {0} least resistance paths must pass through {4} then {3} then
{2} in that order, and not return to {4} from {3} nor to{3} from {2}.

As the next corollary shows, it is also the case that all least resistance direct paths have a

probability similar to each other.

Corollary 2. Let A = {a|r(a) = r(A(x,B,W ))} and a ∈ A. Then Pε(a|x)
Pε(A|x) ≥ C

t(a)/D1(r(A)).

This completes the discussion of the basic results on direct routes.

4. Transitions Between Irreducible Classes

We start again with an initial point x ∈ Z with Ω(x) 6= ∅, a forbidden set W ⊆ Z and a target

set B ⊆ W . Notice that the de�nition in section 3 implies that direct routes from x to B with

forbidden set W are not allowed to pass through all points in Ω(x), since the forbidden set W was
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assumed to be comprehensive. We now wish to relax that restriction, and consider routes which

are allowed to linger freely inside Ω(x).7 So we exclude Ω(x) from the forbidden set, that is we

assume W ∩Ω(x) = ∅. Thus W cannot be comprehensive. However, we assume that W contains at

least one point from every irreducible class except for Ω(x). We then call W quasi-comprehensive,

and the paths A(x,B,W ) from x to B with forbidden set W which have positive probability for

ε > 0 quasi-direct routes.

Ellison (2000) observes that being able to pass through every point in an irreducible class may

have a profound impact on the nature of the paths. The main result of this section makes this

precise by showing that before leaving Ω(x) for good, quasi-direct routes spend most of the time

within Ω(x).

As in the direct case we assume the set A(x,B,W ) is non-empty. Again we are interested in

the structure of the paths in A, in particular: which paths in A(x,B,W ) are most likely, what do

these paths look like, and how long are they?

Let a be a path in A(x,B,W ). It is convenient to view such a path as consisting of two distinct

parts, the initial wandering in or near Ω(x) and the �nal crossing to B. We can think of this in

terms of returning to x a number of times before leaving x to hit B without returning. In particular,

let A− denote the set of paths that begin and end at x and do not touch W , and let A+ be the

routes from x to B that do not touch W nor x in between - that is the direct routes to B with

forbidden set W ∪ {x}. Notice that since W is quasi-comprehensive W ∪ {x} is comprehensive,

so these are indeed direct routes. Then we have the unique decomposition of a into a−, a+ with

a− ∈ A− and a+ ∈ A+. We refer to a− as the equilibrium path and a+ as the exit path.

The equilibrium paths A− have an additional very useful structure: a path a ∈ A− can be

decomposed into loops that begin and end at x but do not hit x (besides not hitting W ) in

between. That is, let A0 = A(x, {x},W ∪ {x}) be the direct paths from x to B = {x} avoiding
the comprehensive set consisting of the quasi-comprehensive set W plus {x} itself (the superscript
0 suggesting a loop). Then paths in A−are exactly sequences a1, a2, . . . , an such that ai ∈ A0. We

write n(a) for the number of loops of a. (Note that it may be that n(a) = 0.)

So any path a ∈ A(x,B,W ) has a unique decomposition a1, a2, · · · , an, a+ where the ai ∈ A0

are the loops in A0 and a+ ∈ A+ is the exit path to B. For non-trivial paths we then de�ne the

equilibrium resistance ρ−(a) = max r(ai), the exit resistance ρ
+(a) = r(a+) and the peak resistance

ρ(a) = max{ρ−(a), ρ+(a)}. For any A ⊆ A(x,B,W ) we can de�ne the least peak resistance

ρ(A) = mina∈A ρ(a). The �rst thing to understand is that least peak resistance paths are also least

exit resistance paths:

Theorem 2. {a|ρ(a) = ρ(A(x,B,W ))} ⊆ {a|ρ+(a) = ρ(A(x,B,W ))}

Proof. Since by de�nition ρ(a) ≥ ρ+(a) the lemma can fail only if there is a path for which
r(a+) < ρ(A(x,B,W )). But x ∈ Ω(x) by assumption, so there is a y ∈ Ω(x) (possibly y = x)

7Notice that for the case of singleton Ω(x) this means the path may remain at x for some time, or leave and return
a number of times before hitting the target.
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with r(x, y) = 0. Hence the path (x, y, a+) ∈ A(x,B,W ) has peak resistance ρ(x, y, a+) = r(a+) <
ρ(A(x,B,W )) contradicting the fact that ρ(A(x,B,W )) was the least peak resistance.

Hence a least peak resistance path - those that as we will show are the ones we are likely to

see - consists of two parts: a− which we will study later, and a+which is a least resistance direct

route from x to B with forbidden set W ∪ {x}. Notice that some points y ∈ Ω(x) may support

lower resistance direct routes to B with forbidden set W ∪ Ω(x), that is, they are more likely to

get there without returning to Ω(x). We call these express exits. Then a least resistance path from

x to B must leave Ω(x) through an express exit: since the express exit is also in Ω(x) it can be

reached from x with zero resistance. Hence to leave Ω(x) through any other exit would incur higher

resistance.

The following result (proof in Appendix 2) plays a role in the theory of quasi-direct routes

similar to that played by least resistance in the theory of direct routes in Corollary 1:

Theorem 3. Let A = {a|ρ(a) = ρ(A(x,B,W ))} denote the least peak resistance paths in A(x,B,W ) 6=
∅. Then limε→0

Pε(A|x)
Pε(A(x,B,W )\A|x) =∞.

Theorem 3 not only tells us the most likely route from Ω(x) to Ω\Ω(x), by implication it tells

us where we are likely to end up in Ω\Ω(x). Let Ωρ be the irreducible classes in Ω\Ω(x) that are

directly reachable from some point y ∈ Ω(x) with least resistance ρ and let Ω−ρ = Ω\(Ωρ ∪ Ω(x)).

Let Pε(Ωi|x) denote the probability that starting at x the �rst arrival at Ω\Ω(x) is in Ωi for

i = ρ,−ρ. Then we have the following immediate corollary of Theorem 3.

Corollary 3. limε→0
Pε(Ωρ|x)
Pε(Ω−ρ|x) =∞.

We now study the set A− of equilibrium paths. We know from Theorem 1 that transition

paths in the direct route case are short. For paths that are allowed to remain in Ω(x) we have the

opposite result: these paths are quite long. For the assertion to make sense it must be the case that

we reach B with probability one, that is Pε(A(x,B,W )|x) = 1. We assure this by assuming that

B = W .8 Our goal is to show that: A− has paths of expected length ε−r(A
+); that the fraction of

time spent in Ω(x) goes to one; and that the absolute time spent outside of Ω(x) goes to in�nity.

Recall that a− ∈ A− is a sequence a1, a2, . . . , an with ai ∈ A0 loops at x. Now let M(A0) be

the number of loops that lie in A0 ⊆ A0. That is, if f : A0 → < is the indicator of A0 (f(a0) = 1

if a0 ∈ A0 and f(a0) = 0 for a0 ∈ A0 \ A0) then M(A0) is the aggregate f−. Also, let t− be the

amount of time along a− spent outside of Ω(x). In Appendix 2 it is shown that the following holds:

Theorem 4. If B = W we have for some C1, D3 > 0

1 + C1ε
−r(A+) ≤ E[t|x,A(x,B,W )] ≤ D2(1, 0)C−N +D3C

−2N ε−r(A
+)

and for A0 ⊆ A0

C1C
t(A0)εr(A

0)−r(A+) ≤ E[M(A0)|x,A−] ≤ D1(r(A0))C−2N εr(A
0)−r(A+).

8Recall that the paths in A(x,B,W ) by de�nition have positive probability of reaching B without touching W
along the way; when B = W there is no other way of reaching B so this probability becomes one.
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Moreover, limε→0E[t−/t|x,A−] = 0.

The result says that quasi-direct paths are long and that the paths return to x many times,

and that during these excursions most of the time is spent within Ω(x). Moreover if there is some

a0 ∈ A0 with r(a0) < r(A+) then the amount of time spent outside of Ω(x) is large in an absolute

sense. When applied to the coordination game of Section 2 the result yields assertions 3 and 4

made there, that going from {0} to {5}, before {5} is reached the system will spend most of the

time at {0} but will many times reach state {1} for relatively brief periods; and that symmetrically,

going from {5} to {0} states {4}, {3} are visited for brief periods while most of the time the system

is in state {5}.

5. The Fall of the Qing Dynasty

We now discuss how our results can be tested and used to interpret historical facts concerning

sequences of long-run social events of small probability. This is the natural �eld of application of

our theory, which concerns transitions along paths whose steps are each quite unlikely to occur.

We focus in particular on the fall of the Qing dynasty in nineteen century China, using a variation

of the model of Levine and Modica (2013).

There are L units of land and a �nite number J of societies. In each period t each society j

has one of a �nite number of internal states ξjt ∈ Ξj . These states evolve according to a �xed

Markov process Qj(ξjt|ξjt−1) > 0 independent of ε. External forces such as disease, climate, other

real shocks to productivity, or the interference of outsiders who are are protected themselves by

geographical barriers, or superior technology can lead to changes in the internal state; the state may

also represent changes to the internal structure of institutions. A good example of the Qj process

within a given unit of land can be found in Acemoglu and Robinson (2001): there external shocks

(recessions) drive changes in institutions - the franchise is extended or contracted. The ability of a

society to resist and in�uence other societies is indexed by state power γj(ξjt). Societies may or may

not satisfy incentive constraints: we represent this by a stability index bj ∈ {0, 1} with 1 indicating

stability, where societies violating incentives are thought to be unstable. This simpli�es Levine and

Modica (2013) by making the learning dynamics part of the evolutionary process. A state z is a

list of land holding and real shocks of the di�erent societies, z = (L1, ξ1, L2, ξ2, . . . , LJ , ξJ).

We now describe Pε. We assume that at most one unit of land changes hands each period. The

probability that society j loses a unit of land is given by a con�ict resolution function determined

by the probabilities π(bj , γj , Ljt, b−j , γ−j , L−jt)[ε] of j losing one unit of land.
9 Notice that since at

most one unit of land can change hands each period
∑J

j=1 πjt ≤ 1 and the shocks must necessarily

be correlated. If a unit of land is lost it is gained by a society chosen randomly according to the

function λ(k|j, Lt) > 0 for k 6= j and λ(j|j, Lt) = 0.

9Notice that this slightly generalizes Levine and Modica (2013) by allowing the probability to depend on the
stability status of other societies. This makes it easier to deal with the adding up constraint that only one unit of
land can be lost each period.
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We make several assumptions about the con�ict resolution function beyond regularity. We

assume that π is strictly positive if ε > 0 and that it is symmetric, so that the names of the

societies do not matter, only their land holdings, state power and stability. We assume that it is

monotone, so that the probability of j losing land decreases with its own state power and land, and

increases with that of other societies. We assume that unstable societies always have resistance

zero to losing a unit of land - if incentive constraints are not satis�ed, individuals experiment with

di�erent actions, and societies experiment with di�erent institutions (albeit just on a single unit

of land at a time). For stable societies we assume the resistance is r(γj , Lj , γ−j , L−j) which is

strictly monotone when non-zero, and that the weakest society society with positive land holding

has zero resistance to losing a unit of land. Finally we assume for given land holding that resistance

is greater when facing more than one opponent with positive land holding than when all enemy

land is in the hands of the strongest land holding opponent - also that this is strict if resistance

is positive. We assume that there is some stable society strong enough that resistance to losing

land is positive when it holds all the land and that the strongest unstable society with the most

favorable value of ξj is stronger than the strongest stable society in its most favorable value of ξj -

re�ecting the idea that unstable societies face weaker incentive constraints.

Call societies with positive land holding active. Since the weakest active society by assumption

has zero resistance to losing land, and since losing land by monotonicity lowers its resistance to

losing more land, we see that the only possible candidates irreducible sets are hegemonies - single

societies that control all the land. Speci�cally if y ∈ Ω(x) then there is a single stable society

j(x) that controls all the land, and the di�erent states y ∈ Ω(x) correspond to di�erent shocks ξ.

Depending on the resistance function r there may or may not be irreducible classes: so that the

model is of interest, we assume that there are at least two.

Our interest here is in how hegemonies fall - that is, how we move from a hegemony Ω(x) to

B = Ω\Ω(x),W = B. 10Accordingly, we may apply Theorem 3 to conclude that when ε is small it

is nearly certain that this transition will take place along a least peak resistance path, and we want

to describe such paths in the model at hand. In doing so the interesting exercise is to compare

the theoretical predictions of the transition to the fall of an actual hegemony. As a case study for

which there is quite a bit of historical information, we take the fall of the �nal Qing dynasty in

China and the subsequent rise of the communist hegemony.11

The exit path from Ω(x) must be a direct path from y ∈ Ω(x) to B. To have least exit resistance,

y must correspond to the value of ξj(x) for which state power is the least, that is the worst possible

shock. The direct path itself must have three stages: it must �rst move through the basin of Ω(x)

10Another blocking set of interest consists of the states where the hegemony loses a certain threshold amount of
land to an invader. The paths to this blocking set are qualitatively the same as those we are going to describe below
so we will not elaborate on it further. However, such sets may be empirically important, because it is easier to say
that a hegemony lost 1/3rd of its land than to say that it �left the basin.�

11There are of course many accounts of this period, and while they sometimes disagree on exactly who did what
to whom when, all agree on the basic facts we describe below. One readable account by a journalist is that of Fenby
(2008).
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- we call this the fall of the hegemony. After the fall of the hegemony there should be a turbulent

period of warlordism in which the basin of a di�erent hegemony has not yet been reached. Then

there will be a consolidation in which the basin of the eventual new hegemony is crossed until the

new hegemony is reached.

During the fall of the hegemony unstable societies with maximum state power - following Levine

and Modica (2013) we call them zealots - play a key role. The reason for this is simple: while in

the basin of Ω(x) the hegemony has a positive resistance to losing land. By monotonicity it has

the least resistance to losing land if all the land not held by the hegemon is held by a single society

with the greatest possible state power in its most favorable state - that is, zealots. Hence least

resistance implies that land lost by the hegemony during the fall must be lost to zealots, and that

once lost it is never regained.

Prior to the fall of the hegemony, by Theorem 4 the theory predicts that there should be a

small fraction but large number of periods where there are failed rebellions: lands that are lost to

other societies but quickly regained. These failed rebellions may or may not involve zealots, and

need not take place when ξj is at its nadir. However, prior to the actual exit, ξj must be such that

state power is at a nadir, and this means that resistance to rebellions is less, so there should be

more frequent and larger rebellions prior to the �nal fall of the society.

To put this in the Chinese context, the basic fact is that Chinese institutions that lasted from

roughly the introduction of the Imperial Examination System in 605 CE until 1911 CE were swept

away in less than a year. It is useful to begin the story about 1838, before the First Opium War. At

that time the Qing dynasty held a hegemony over China proper: the area bordered by the di�cult

terrain of Indochina in the Southeast, the Himalayan mountains in the South, the inhospitable

deserts in the West, the Paci�c Ocean in the East and the wasteland of Mongolia in the North. It

also held a number of outlying areas not part of China proper - the Korean Peninsula, Indochina

and Taiwan. As these are not so easily defended, are not Chinese, and have only been part of the

Chinese hegemony at certain times - and moreover, the current government claims only Taiwan

among these territories - we do not count them as part of the hegemony.

Several independent sources of instability concurred to the fall of the hegemony. In the early

1800s China fell into a severe economic depression from which it did not recover prior to the fall of

the hegemony. Outsiders, most notably the English, French, and Japanese actively intervened in

China, sometimes �ghting for and other times against the Qing, but in any case certainly putting

pressure on institutional change. Opium consumption, induced by the English to correct trade

imbalances, increased to an unpredictable, and dramatic level.

From 1839 to 1910 there were a series of unsuccessful attempts to overthrow the Qing dynasty

including local rebellions and acts of de�ance by committed revolutionaries. During this time the

outlying territories were lost: Korea became independent, Indochina was lost to the French, and

Taiwan to the Japanese further weakening the hegemon. Roughly speaking the state ξj became

increasingly worse. However, each internal rebellion was successfully repressed, each war brought

to an end, and in each case the Qing hegemony over China proper - tax collecting authority, control
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of institutions local and global - remained intact. There were institutional changes that took place

during this period, some forced by the outsiders, and an attempt to placate the revolutionaries,

such as the abolition of the imperial examination system in 1905. These can be viewed as shocks

ξj that further weakened the state. Although it is hard to measure the relative frequency of failed

rebellions before and after the economic weakness of the 19th Century there seem not to have been

such dramatic episodes as the Duggan revolt which lasted for several years. As Theorem 4 predicts,

before the actual fall the state ξj is very bad, and there are many and probably increasing failed

attempts at rebellion.

The actual fall of the Qing occurred in 1911 and as Theorem 1 suggests, it was very quick. There

were again a series of revolts - now however they succeed. They are loosely coordinated by Sun

Yat Sen. The groups carrying out these revolts can reasonably be described as zealots: they share

in common a dedication to overthrowing the Qing, they are willing to su�er severe risk and live

under unpleasant circumstances in order to achieve that goal. Such behavior is power maximizing

- but is not stable in the sense that no society has every lasted very long based on the fanatical

devotion of its members - nor was it the case in China. Hence the theoretical description of the

fall of the hegemony is relatively accurate: zealots quickly capture the land, and do so without a

serious setback. By the end of 1911 the Qing Emperor abdicated and Sun Yat Sen became the

provisional President of China, which however no longer was hegemonic in any reasonable sense of

the word.

Next is the period of warlordism, both in theory and in fact. In theory, once out of the basin,

least resistance paths all must have resistance zero. Hence very little can be said in general: there

can be many competing societies, land may be lost and gained, zealots may or may not play a

role. The only general proposition is that no stable society has yet gained enough land to reach the

basin of its own hegemony. Again, this is an accurate description of the situation in China between

1911 and 1946. Sun Yat Sen was quickly deposed by a less fanatical and more materialistic warlord

Yuan Shikai, but until about 1927, and even after, there are many warlords in various parts of

China who rise and fall, many revolutions, some successful and other unsuccessful. There is also

the Sino-Tibetan war and the Soviet invasion of Xinjiang during this period. Basically the theory

predicts chaos (in the non-technical sense) and that is what we see. Beginning in about 1927 things

settle down slightly with two relatively more powerful groups, the Nationalists and the Communists,

�ghting a civil war - but there remain many warlords who continue to rise and fall, at times forming

alliances or professing allegiance to the two more signi�cant groups. These two groups, unlike the

earlier revolutionaries appear to have coherent and potentially stable institutions. Then in 1936

the Japanese seize control of most of the country, an occupation that lasts until 1945.

The �nal stage of a least resistance transition is the consolidation. Again all transitions must

have zero resistance, but now we are in the basin of the hegemony so the least resistance path

consists of the hegemony gaining territory - without losing any - until hegemony is again estab-

lished. Notice that since in this model once the basin is left there are zero resistance transitions

to any particular hegemony breaching the threshold, the model makes no prediction about which
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hegemony eventually emerges - in particular there is a non-negligible probability that even a very

weak hegemony emerges. In China, the threshold appears to be reached about 1946 when the

Communists controlled about a quarter of the country and about a third of the population. They

quickly overran the remaining areas held by the Nationalists, who retreated to Taiwan in 1949.

6. The Big Picture

Consider an overview of the dynamics of Pε. Starting at any point x by Theorem 1 we move

quickly to one of the irreducible sets Ω(y). Once there, by Theorem 4 there it is a long time before

we reach a di�erent Ω(z) and most of that time is spent in Ω(y). One question we wish to address is

what the dynamics look like during the long period when we are in Ω(y). When we do �nally leave

Ω(y) by Proposition 2 we move quickly to the next Ω(z) and it is most likely the irreducible set

that has least exit resistance from Ω(y). The second question we wish to address is over the longer

run how much time do we spend in the di�erent irreducible sets Ω(y). To this end, we assume in

this section that Pε is ergodic for ε > 0 and denote by µε the unique ergodic distribution of the

process.

6.1. Transitory and Irreducible Dynamics

When ε = 0 we cannot move between irreducible sets Ω(x) but we have well de�ned and ergodic

dynamics within each such set. Moreover, these dynamics are fast in the sense that if we are

interested in the approximate probability of events, it su�ces to consider paths of bounded length

(where the bound is obviously independent of ε which plays no role in the dynamics of P0). For

such events, the probabilities in P0 are much the same as for Pε for ε small. Speci�cally,

Theorem 5. let A1 and A2 be any collections of paths of bounded length and for which P0(A2|x) >
0. Then

lim
ε→0

Pε(A1|x)

Pε(A2|x)
=
P0(A1|x)

P0(A2|x)
.

Proof. Since the probabilities are de�ned by �nite sums of �nite products of the transition proba-
bilities Pε(z|y) and the length of the sums and products are bounded independent of ε the result
follows immediately from the assumption that limε→0 Pε(z|y) = P0(z|y).

In particular since paths that lie entirely within Ω(x) have probability one in P0 given x the

probability of sets of paths of �nite length within Ω(x) is roughly the same in Pε as in P0 when ε

is small. For example, in the Acemoglu and Robinson (2001) example, the pattern and probability

of recessions and government transitions is roughly the same for all small or zero ε.

The other important characteristic of Ω(x) is the amount of time spent at di�erent points - in

the Acemoglu and Robinson (2001) case we might be interested in the frequency of recessions, for

example. Notice that if we restrict the state space to Ω(x) then P0 is an ergodic Markov process on

that space, so has a unique and strictly positive ergodic distribution µ0(y), where
∑

y∈Ω(x) µ0(y) = 1.

Notice in particular that if y ∈ Ω(x) the ratio µ0(x)/µ0(y) is well-de�ned and �nite. We can relate

this to the ratio of stationary probabilities µε(x)/µε(y) for the process when ε > 0; in Appendix 3

we show:
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Theorem 6. If y ∈ Ω(x) then

lim
ε→0

µε(x)

µε(y)
=
µ0(x)

µ0(y)
.

For any two irreducible classes Ω(x),Ω(y) de�ne the resistance r(Ω(x),Ω(y)) as the least resis-

tance of any direct path from x to the target Ω(y) with forbidden set W = {x} ∪ Ω \ Ω(x) - paths

which can stay in Ω(x) as long as they do not go back to x, and when they leave it they do not

touch other irreducible sets. Note that r(Ω(x),Ω(y)) is independent of the particular starting point

x in Ω(x) since there are zero resistance paths from any point in Ω(x) to any other. Let W be all

the irreducible classes. De�ne also r(Ω(x)) = minΩ(y)∈W r(Ω(x),Ω(y)). It is shown in Appendix 3

that:

Theorem 7. Allowing that Ω(x) may be empty, if A = A(x, {y}, {x}∪{y}∪(Ω\Ω(x)) are the direct
routes from x to y with forbidden set {x} ∪ {y} ∪ (Ω\Ω(x)) then µε(y) ≥ µε(x)CN εr(A). There is
also a constant D4 such that if x ∈ Ω(x) and there is a zero resistance path from y to x then also
µε(y) ≤ µε(x)D4ε

min{r(A),r(Ω(x))}.

It is convenient to de�ne the inner basin of Ω(x) as the set of points y that have zero resistance

of reaching Ω(x) and in addition have resistance less than or equal to r(Ω(x)) of being reached from

x along a direct route with forbidden set {x}∪{y}∪ (Ω\Ω(x)). These are points that are in a sense

�close� to Ω(x). For the inner basin, the bound in Theorem 7 provides an exact computation of

the resistance, that is for y in the inner basin of Ω(x) and A the direct routes from x to y we have

µε(x)CN εr(A) ≤ µε(y) ≤ µε(x)D4ε
r(A). For points that are not in the inner basin of any irreducible

set, that is, points that are in the outer basin of one or more irreducible set, but are �hard� to reach

from any of them we cannot exact computation of the resistance of the stationary probabilities -

however, Theorem 7 does show that such points are not terribly likely compared to points in the

inner basin - and perhaps they are not of such great interest.

6.2. Long Run Ergodic Probabilities

Consider again our overview of the dynamics of Pε. Starting at any point x by Theorem 1 we

move quickly to one of the irreducible sets Ω(y). Once, by Theorem 4 there it is a long time before

we reach a di�erent Ω(z) and most of that time is spent in Ω(y). When we do �nally leave Ω(y)

by Proposition 2 we move quickly - and directly, in our sense - to the next Ω(z) and it is most

likely the irreducible set that has least exit resistance from Ω(y). Proceeding in this way we get a

sequence of irreducible sets Ω(xi) connected by least exit resistances. Since the set W of irreducible

classes in P0 is �nite, eventually this sequence must have a loop.

More general than the notion of a loop, we introduce the notion of a circuit on a subset Φ ⊆ Ψ

of a set of points on which a resistance function r(ψ, φ) is de�ned. In the case above, where Ψ = W ,

the relevant resistances are the least exit resistances connecting the irreducible class ψ with φ. For

any ψ ∈ Ψ we de�ne the least resistance r(ψ) = minφ∈Ψ r(ψ, φ). We say that Φ is a circuit if for

each pair φ1, ψ ∈ Φ there is a path φ1, φ2, . . . , φn ∈ Φ with φn = ψ such that for τ = 2, 3, . . . n we

have r(φτ−1, φτ ) = r(φτ−1), that is, there is a path from φ1to ψ in Φ such that each connection has

least resistance.
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Our basic observation is that once we reach a circuit, we remain within the circuit for a long

time before going to another circuit. Given that we stay in ψ roughly ε−r(ψ) periods before moving

to another irreducible class in the circuit, we might expect that the amount of time we spend at

ψ is roughly εr(φ)−r(ψ) as long as the amount of time we spend at φ. In Appendix 4 we show that

this is indeed true.

Theorem 8. If the irreducible classes Ω(x) and Ω(y) are in the same circuit then

CN

NN−1DN
εr(Ω(y))−r(Ω(x)) ≤ µε(x)

µε(y)
≤ NN−1DN

CN
εr(Ω(y))−r(Ω(x)).

How long do we actually spend in a circuit? Since the probability of leaving ψ is of order εr(ψ)

the expected length of any visit to ψ is 1/εr(ψ). On the other hand the probability of going to a

�xed φ out of the circuit is of order εr(ψ,φ). Hence the probability of going to φ during a visit to

ψ is of order (1/εr(ψ))εr(ψ,φ). In order for this to occur with very high probability the number of

visits to ψ must be roughly kψ where kψ(1/εr(ψ))εr(ψ,φ) = 1. That is kψ = 1/εr(ψ,φ)−r(ψ). If we

de�ne the modi�ed resistance from ψ to φ as R(ψ, φ) = r(ψ, φ) − r(ψ), then the number of visits

is least for the ψ which has minimum R(ψ, φ) over ψ ∈ Φ. This is the most likely (actually least

modi�ed resistant) exit from the circuit. Also, it will exit to a circuit which is easiest to reach. This

in turn suggests that we can form circuits of circuits using modi�ed resistances as the measure of

resistance in going from one circuit to another. The system moves between circuits of circuits in

a longer time horizon. Moreover, as we have seen the crossings between circuits are direct routes,

hence we will de�ne resistance in terms of such paths.

Speci�cally we recursively de�ne a class of reverse �ltrations with resistances over the set Ψ0 =

W of irreducible sets for P0; assume W has NW elements, with NW ≥ 2. As before, for ψ, φ ∈ W the

resistance r0(ψ, φ) is the least resistance of any direct path from x ∈ ψ to the target φ with forbidden

set W = {x}∪Ω\Ω(x). Now starting with Ψk−1 we observe from Appendix 4 that there is at least

one non-trivial circuit, and that every singleton element is trivially a circuit. Hence we can form

a non-trivial partition of Ψk−1 into circuits, and denote this partition Ψk. As before we de�ne the

modi�ed resistance Rk−1(ψk−1, φk−1) = rk−1(ψk−1, φk−1)−rk−1(ψk−1), and the resistance function

on Ψk by the least modi�ed resistance: rk(ψk, φk) = minψk−1∈ψk,φk−1∈φk R
k−1(ψk−1, φk−1). Note

that since each partition is non-trivial, this construction has at most k ≤ NW layers before the

partition has a single element and the construction stops.

Given a reverse �ltration, for given x ∈ Ω(x) we can now de�ne ψk(x) recursively by x ∈
ψo(x), ψ0(x) ∈ ψ1(x) . . .. The modi�ed radius of x ∈ Ω(x) of order k is then de�ned by

R
k
(x) =

k∑
κ=0

rκ(ψκ(x)).

Then we show in Appendix 4 that
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Theorem 9. Let k be such that ψk(x) = ψk(y); then

CN

NN−2DN
εR

k−1
(y)−Rk−1

(x) ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εR

k−1
(y)−Rk−1

(x).

It is useful to de�ne R
k−1

(y)−Rk−1
(x) as the relative ergodic resistance of x over y so that this

theorem just says that the relative probabilities are proportional to ε to the power of the relative

ergodic resistance. Notice that the states x that have ergodic probabilities that are bounded away

from zero - the stochastically stable states - are exactly those with the least values of R
k−1

(x) where

k is the highest layer of the �ltration at which the partition has a single element.

6.3. Examples

Turning �rst to the example of Section 2, we see that the two irreducible classes are necessarily on

the same circuit, so by Theorem 9 the relative resistance is simply the di�erence in least resistances

of the two points {0}, {5}, which are 2 and 3 respectively, so that the system spends roughly ε−1

more time at {5} than at {0}. Note that since there are only two trees on a set with two points,

this same result may easily be derived also from (for example) Young (1993). However, we may also

apply Theorem 7 to see that {4} also occurs about ε times as often as {5}, that is to say, roughly

as frequently as {0}. From Theorem 4 we also see that while {0} will be seen for long stretches of

time, the state {4} will be seen frequently but only brie�y before reverting to {5}. This is the �fth
and �nal assertion about the example made in Section 2.

To further illustrate the application of Theorem 9, let us give a complete analysis of the case

where W has three elements. Note that there are 9 trees on 3 points, so the analysis by means of

trees is already di�cult. For simplicity let us make the generic assumption that no two resistances

or sums or di�erences of resistances are equal.

There are two cases: either there is a single circuit, or there is one circuit consisting of two

points, and a separate isolated point. The case of a single circuit is trivial - in this case the relative

ergodic resistances are given simply by the di�erences in least resistances between the three points,

and the stochastically stable state is the point with least least resistance.

Take �nally, the case of W with one two-point circuit and an isolated point, and denote by

φa, φb the two points on the circuit with φc the remaining point. Assume without loss of generality

that r(φa) > r(φb) so that within the circuit φa is relatively more likely. Notice that r(φa, φb) <

r(φa, φc), r(φb, φa) < r(φb, φc) since φa, φb are on the same circuit - this also implies r(φa) =

r(φa, φb), r(φb) = r(φb, φa). Turning to the recursion, we need to work out the least modi�ed

resistances. Let ψa = {φa, φb} be the circuit and ψc = φc the isolated point. Then r1(ψc, ψa) =

min{r(φc, φa) − r(φc), r(φc, φb) − r(φc)} = 0 while r1(ψa, ψc) = min{r(φa, φc) − r(φa), r(φb, φc) −
r(φb)}. Hence R

1
(φc) = r(φc), which is just the radius of φc, while

R
1
(φa) = r(φa) + min{r(φa, φc)− r(φa), r(φb, φc)− r(φb)}

= min{r(φa, φc), r(φa) + r(φb, φc)− r(φb)}
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which is to say exactly what Ellison (2000) de�nes as the modi�ed co-radius of φc.
12 The relative

ergodic resistance of φa over φc is therefore r(φc)−R
1
(φa), while the relative ergodic resistance of φb

can be recovered from the relative ergodic resistance of φb over φa which is just r(φa)−r(φb). With

respect to stochastic stability, we see that φc is stochastically stable if and only if its radius r(φc) is

greater than its co-radius R
1
(φa) which is Ellison (2000)'s su�cient condition, and otherwise φa is

stochastically stable. In short, the entire ergodic picture comes down to computing three numbers:

the radius and co-radius of φc and the di�erence between the radii of φa and φb.

7. Conclusion

This paper is about events and combinations of events that are unlikely and that can be modeled

as a �nite Markov process, in particular how such a process moves from one relatively stable long-

run state to another. Examples are transitions between di�erent equilibria in a game or di�erent

political regimes. We show that these systems exhibit long periods of stability punctuated by brief

episodes of change, and we give a detailed description of the probabilities and frequencies of these

di�erent outcomes. Within the literature on �evolution of conventions" we complement the results

of Kandori, Mailath and Rob (1993), Young (1993) and Ellison (2000) on long run dynamics in

games. When applied to the context of social evolution, our theory has implications both for the

societies we are likely to see and for the design of institutions: institutions that will persist for long

periods of time must be robust against multiple failures, and it is these multiple failures that lead

a society to fall.

It may be useful to look at smaller systems about which we have a great deal of information -

also subject to small unlikely shocks, and subject to the same type of Markov analysis - to see what

is involved. For example commercial airlines, which despite the vast number of �ights and miles

�own crash relatively infrequently. As our theory predicts, when they do crash, it is typically due

to multiple near simultaneous failures. To take a speci�c example, on November 24, 2001, en route

from Berlin on approach to Zurich Crossair Flight 3597 crashed near Bassersdorf, Switzerland killing

24 of the 33 people on board. According to the �ight investigation seven independent unfortunate

events occurred on that occasion.13 These multiple failures seem typical of commercial aviation

crashes. Each individual failures is unlikely, but none terribly so. What is highly unlikely is that all

occur in combination. In general airplanes are designed with a high degree of redundancy to provide

insulation against failure of one or even several components: multiple pilots, multiple navigation

12In fact the modi�ed co-radius is de�ned as the larger of R
1
(φa) and R

1
(φb) = min{r(φb, φc), r(φb, φa)+r(φa, φc)−

r(φa, φb)}. However, r(φa, φc) > r(φb, φa) + r(φa, φc) − r(φa, φb) and r(φa, φb) + r(φb, φc) − r(φb, φa) > r(φb, φc)

imply R
1
(φa) ≥ R1

(φb).
13See AAIB (2002): (1) the pilot had a bad record of following procedures during landing and was inadequately

trained, but was allowed never-the-less to transport passengers; (2) the �ight was behind schedule and consequently
the pilot was in a hurry to land; (3) due to noise regulations the plane was diverted to a less safe runway; (4) the
runway had inadequate instrumentation and the airport parameters and protocols for landing on the runway were
inadequate; (5) the range of hills the plane crashed into was not marked on the chart; (6) the pilot put the plane into
an overly steep descent and descended too low without proper visual contact with the ground; (7) the pilot did not
monitor the proper instruments during the attempted landing.
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systems, multiple engines, multiple independent hydraulic systems and so forth. So it is with human

societies. Those that survive for long periods of time must be well cushioned against even multiple

failures. For example, the fall of the Roman Empire has been attributed to many factors: religious

ferment, the plague, corruption, the forced migration of hostile outsiders, economic recession, and

so forth. Despite the e�ort of historians to establish each as "the" cause of the fall, as is the case

with Flight 3597 all of these things happened - and while each is uncommon, none is particularly

unlikely, and the Roman Empire had su�ered through each of these, often in combination, many

times before. What is unique about the fall is that all these things occurred at once. When a

system or society is well designed it takes a perfect storm - everything going wrong at once - to

bring it down. But - as this paper shows - it is the least unlikely combination of things - the least

resistance direct route - that will typically lead - for good or ill - to abrupt and sudden change.

Appendix 1: Direct Routes

Our goal is to establish probability and expectations bounds on subsets A ⊆ A(x,B,W ) 6= ∅,
in particular to prove Theorem 1 in the text. It will be convenient to de�ne r to be the largest

�nite value of r(y, z) and r to be the smallest non-zero value of r(y, z). Since the state space is

�nite these are well-de�ned. Once we establish that r(A) = mina∈A r(a) exists, getting a lower

bound on Pε(A|x) is relatively easy: it is bounded below by the probability of a path a ∈ A with

resistance r(a), which is to say, it of order εr(a) = εr(A). The main goal is to establish a similar

upper bound. The problem is that A can easily contain in�nitely many paths with resistance r(A)

as well as paths of greater resistance. However, there are only �nitely many paths of any given

length, so if there are in�nitely many paths most of them must be very long. The idea is that since

paths in A must avoid the comprehensive set W they are not likely to be very long since there are

zero resistance routes to W . To make this precise we construct a �nite set of template paths of

relatively low resistance and show that all the paths in A can be constructed by adding loops to the

template paths. We then show that the probability of all paths constructed from a given template

is bounded by the probability of the template times a constant that does not depend on ε.

Since an analysis of loops form a key part of the analysis, we begin by introducing the notion

of loop-cutting. If a = (z0, z2, . . . , zt) we say that a′ is a loop-cut of a at zτ = zτ ′ for τ
′ > τ

if a′ = (z0, z1, . . . , zτ , zτ ′+1, . . . , zt) for τ ′ < t, and a′ = (z0, z1, . . . , zτ−1, zτ ) if τ ′ = t. Note the

obvious fact that r(a′) ≤ r(a). A map m from the set of all paths to itself is a loop-cutting

algorithm if there is a sequence a1, a2, . . . , aM with a1 = a, aM = m(a) and aj+1 is a loop-cut of aj

for j = 1, 2, . . . ,M − 1. Note that r(m(a)) ≤ r(a). The idea is that m(a) is a template for a from

which a can be reconstructed by adding loops.

A loop cutting algorithm ismaximal ifm(m(a)) = m(a). Recall that t(a) denotes the number on

transitions in a; we let t(m) denote the greatest number of transitions of any path inm(A(x,B,W )).

We can establish the existence of mina∈A r(a) using the zero-cut algorithm. For any a =

(z0, z2, . . . zt) if there is no loop of zero resistance stop. Otherwise cut the �rst and shortest loop
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of zero resistance and repeat.14 This is obviously maximal. Note that m(a) is a no-zero-loop path

in the sense that it contains no zero-resistance loops, and that r(m(a)) = r(a). Our �rst step is to

give a bound on the length of no-zero-loop paths.

Lemma 1. If a is a no-zero-loop path then t(a) ≤ (N − 1)r(a)/r.

Proof. Observe that since non-zero resistance transitions have resistance at least r there are at most
r(a)/r such transitions, and the remaining transitions must have zero resistance. Since there are
no zero-resistance loops, the number of zero-resistance transitions between each positive resistance
transition is at most N − 1.

We can now apply the zero-cut algorithm to prove the basic fact that

Lemma 2. r(A) = mina∈A r(a) is well-de�ned.

Proof. Fix a ∈ A, noting that r(a) < ∞. Let m be the zero-cut algorithm. Consider that for any
a′ ∈ A with r(a′) ≤ r(a) we have r(a′) = r(m(a′)) and that t(m(a′)) ≤ (N − 1)r(a)/r. But there
are only �nitely many paths of this length, so only �nitely many possible values of r(a′) ≤ r(a).
Hence mina∈A r(a) exists.

We can now establish the �easy� lower bound on Pε(A|x). Recall that t(A) = min{t(a)|a ∈
A, r(a) = r(A)}.15

Lemma 3. Pε(A|x) ≥ Ct(A)εr(A).

Proof. Let a ∈ A satisfy r(a) = r(A) and t(a) = t(A).Then

Pε(A|x) ≥ Pε(a|x) =

t(a)∏
τ=1

Pε(zτ |zτ−1) ≥
t(a)∏
τ=1

Cεr(zτ ,zτ−1) = Ct(a)εr(a).

To establish an upper bound, we start by establishing the fact that, given that W is compre-

hensive, long loops are not very likely. Let L(z) be the set consisting of all �nite resistance loops

(z, z1, z2, . . . , zt−1, z) such that zτ /∈W .

Lemma 4. Pε(t(a)|L(z)) ≤
[
(1− CN )1/N

]t(a)−N

Proof. By convention if t = 0 then Pε(t|L(z)) ≤ 1. Otherwise, block t into bt/Nc blocks of length
N (bt/Nc being the largest integer not greater than t/N). Since W is comprehensive there is a
positive probability path from z to W when ε = 0. It follows that there must be such a path
with no more than N transitions. From the de�nition of resistance, such a path must have zero
resistance, so that each transition has probability at least C regardless of ε. Hence the probability
starting at z of hitting W in N steps is at least CN . Since the paths in question do not in fact hit
W we conclude that Pε(t|L(z)) ≤ (1− CN )bt/Nc ≤ (1− CN )((t/N)−1).

14In other words, if there are multiple loops at a point we only cut the �rst.
15This minimum exists because the set is a set of non-negative integers.
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We now want to reverse the loop-cutting procedure by adding loops to templates to construct

the paths in A. To do so for a ∈ m(A) we will de�ne a map m−1(a). Observe that since m is a

loop-cutting algorithm, if a = (z0, z1, . . . , zt) ∈ m(A) and a′ ∈ m−1(a) then a′ is a sequence of loops

a′ = (a0, a1, . . . , at−1, zt) with aτ ∈ L(zτ ), or if a = (z0) then a′ = (a0).16 We de�ne m−1(a) to be

the set of all such paths, so that m−1(a) ⊇ m−1(a). Now let m−1
s (a) be the paths in m−1(a) with

exactly s transitions. The point is that the probability of m−1
s (a) is the product of the probability

of the loops and the probability of the transitions from zτ−1 to zτ . This enables us to give an upper

bound of order
[
(1− CN )1/N

]s
εr(A).

Lemma 5. For a ∈ m(A) we have Pε(m
−1
s (a)|x) ≤ st(a)Dt(a)

[
(1− CN )1/N

]s−t(a)−N
εr(a)

Proof. For any a′ = (a0, a1, . . . , at−1, zt) or a′ = (a0) let tτ be the number of transitions of aτ
(possibly zero). Hence an element of m−1(a) starts at z0 and either moves directly to z1 or spends
t1 − 1 periods at some sequence of states that do not lie in W then reaches z0 again, and moves
directly to z1. From zτ−1 it then either moves directly to zτ or spends tτ−1 − 1 periods at some
sequence of states that do not lie in W then reaches zτ−1again and moves directly to zτ . Fixing the

tτ 's such a path has probability
∏t(a)
τ=1 Pε(zτ |zτ−1)Pε(tτ−1|L(zτ−1)), and Pε(m

−1
s (a)|x) is the sum of

these products over all t0, . . . tt(a) ≥ 0 which sum to s− t(a):

Pε(m
−1
s (a)|x) =

∑
tτ≥0,t0+t1+...+tt(a)=s−t(a)

t(a)∏
τ=1

Pε(zτ |zτ−1)Pε(tτ−1|L(zτ−1))

Each product is bounded above by Dt(a)εr(a)
[
(1− CN )1/N

]s−t(a)−N
, and the number of terms is

smaller than (s− t(a))t(a) < st(a). This gives the stated bound.

To analyze A we will need loop-cutting algorithm that produces templates with resistance no

smaller than r(A). We say that m preserves r if r(a) ≥ r implies r(m(a)) ≥ r. One such algorithm

is the r-preserving algorithm. For any a = (z0, z1, . . . zt) if no loop can be cut without reducing the

resistance of a below r stop. Otherwise cut the �rst and shortest such loop and repeat. Observe

that for an r-preserving algorithm the image m(A) consists of no-zero-loop paths and is maximal

since removing any loop would necessarily reduce the resistance below r. The key property of this

algorithm is that it produces templates with resistance not too much bigger than r and of bounded

length - and in particular that means there are �nitely many templates.

Lemma 6. For the r-preserving loop-cup algorithm r(m(a)) ≤ r+Nr and t(m(a)) ≤ (N − 1)(r+
Nr)/r ≡ t(r).

Proof. Observe �rst that if r(m(a)) > Nr then m(a) must have a loop of resistance greater than
zero, and hence must have a loop of resistance no greater than Nr. If r(m(a)) > r+Nr removing
such a loop leaves resistance greater than or equal to r contradicting the fact that the r-preserving
algorithm can leave no such loop. To �nd t(m) apply Lemma 1.

16Since zt ∈ B ⊆W then zτ = zt only if τ = 1 or τ = t. Hence if zt is part of a loop cutting the loop results in the
zero transition path (z1).
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Now let As be the paths in A with exactly s transitions. We now have enough tools to give an

upper bound of order
[
(1− CN )1/N

]s
εr(A) to the probability Pε(As|x).

Lemma 7. Pε(As|x) ≤ N t(r(A))st(r(A))Dt(r(A))
[
(1− CN )1/N

]s−t(r(A))−N
εr(A).

Proof. Let m be the r(A)-preserving algorithm. Then for a ∈ m(A) we have t(a) ≤ t(r(A)) and
r(a) ≥ r(A), hence

Pε(As|x) ≤
∑

a∈m(A)

Pε(m
−1
s (a)|x)

≤
∑

a∈m(A)

st(a)Dt(a)
[
(1− CN )1/N

]s−t(a)−N
εr(a)

≤
∑

a∈m(A)

st(r(A))−1Dt(r(A))
[
(1− CN )1/N

]s−t(r(A))−N
εr(A)

and there are at most N t(r(A)) elements in m(A) since the maximum length of any element is
t(r(A)).

Adding up over the length of the paths, we can now establish an upper bound of order εr(A),

the same order as the lower bound in Lemma 3.

Lemma 8. There are constants 0 < D1(r) <∞ such that Pε(A|x) ≤ D1(r(A))εr(A).

Proof. We have

Pε(A|x) =
∞∑
s=1

Pε(As|x)

≤
∞∑
s=1

N t(r(A))st(r(A))Dt(r(A))
[
(1− CN )1/N

]s−t(r(A))−N
εr(A)

= N t(r(A))Dt(r(A))
[
(1− CN )1/N

]−t(r(A))−N
εr(A)

∞∑
s=1

st(r(A))
[
(1− CN )1/N

]s
The series

∑∞
s=1 s

t(r(A))
[
(1− CN )1/N

]s
is summable given that C > 0 (it is known as the Jon-

quière's function of order −t(r(A))).

This completes the proof of the bounds for Pε(A|x) stated in Theorem 1. For the last result,

since the power to which s is raised in the sum can be arbitrary, we can use a similar argument to

establish bounds for the moments E[tk(a)|x,A]:

Lemma 9. There are constants 0 < D2(k, r) <∞ such that E[tk(a)|x,A] ≤ D2(k, r(A))/Ct(A).

Proof. Using Lemmas 3 and 7 we get

E[tk(a)|x,A] =

∑∞
s=1 s

kPε(As|x)

Pε(A|x)
≤
∑∞

s=1N
t(r(A))st(r(A)+kDt(r(A))

[
(1− CN )1/N

]s−t(r(A))−N
εr(A)

Ct(A)εr(A)

As in the previous lemma the series is summable giving the desired result.
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Appendix 2: Quasi-Direct Routes

Theorem. [Theorem 3 in text] Let A = {a|ρ(a) = ρ(A(x,B,W ))} denote the least peak resistance

paths in A(x,B,W ) 6= ∅. Then limε→0
Pε(A|x)

Pε(A(x,B,W )\A|x) =∞.

Proof. Fix ρ = ρ(A(x,B,W )). By Theorem 2 the set A consists of the set of paths of the form
a1, a2, . . . , an, a

+ where ai ∈ A0 and a+ ∈ A+and r(ai) ≤ ρ, r(a+) = ρ. De�ne the set of paths
A>ρ as those having the form a1, a2, . . . , an, an+1 where ai ∈ A0 and an+1 ∈ A0 ∪A+and r(ai) ≤
ρ, r(an+1) > ρ. We claim that Pε(A>ρ|x) ≥ Pε(A(x,B,W )\A|x) so that it will su�ce to prove

thatlimε→0
Pε(A|x)
Pε(A>ρ|x) = ∞. To see the truth of this claim, observe that if a ∈ A(x,B,W )\A then

the �rst part of the path must necessarily lie in A>ρ so the event A(x,B,W )\A implies the event
A>ρ.

Now let A0
ρ,A

+
ρ ,A0

>ρ denote the subsets of A0 and A+with resistance exactly equal to ρ and
strictly bigger than ρ respectively. We compute

Pε(A|x)

Pε(A>ρ|x)
=

∑∞
n=0 P

n
ε (A0

ρ|x)Pε(A
+
ρ |x)∑∞

n=0 P
n
ε (A0

ρ|x)Pε(A0
>ρ ∪A+

>ρ|x)

=
Pε(A

+
ρ |x)

Pε(A0
>ρ ∪A+

>ρ|x)
≥

Pε(A
+
ρ |x)

Pε(A0
>ρ|x) + Pε(A

+
>ρ|x)

and the result now follows directly from Theorem 1 on the probability of direct paths.

When B = W the decomposition also makes it easy to do computations since the loops ai are

independent identically distributed random variables. Speci�cally, for f : A0 → < and a− ∈ A−

de�ne f−(a−) ≡
∑n(a)

i=1 f(ai). Then for any function g(n) of the number of loops we have

Lemma 10. if B = W then E(f−g|x,A−) = E(f |x,A0)E(ng|x,A−), and E(n|x,A−) = 1/Pε(A
+|x)

Proof. Since B = W we have Pε(A0|x) + Pε(A
+|x) = 1, while A0 and A+ are disjoint. Then

E(f−g|x,A−) = E[
n∑
i=1

f(ai)g|x,A−] = E[
n∑
i=1

E[f(ai)g|x,A−, n]|x,A−] = E[
n∑
i=1

gE[f(ai)|x,A−, n]|x,A−].

The event (A−, n) is exactly the event ai ∈ A0 for i = 1, 2, . . . , n and an+1 ∈ A+ and conditional
on x these are independent events. Hence E(f(ai)|x,A−, n) = E(f |x,A0).We conclude that

E(f−g|x,A−) = E[
n∑
i=1

gE(f |x,A0)|x,A−]

= E(f |x,A0)E[

n∑
i=1

g|x,A−] = E(f |x,A0)E[ng|x,A−].

This is the �rst result. Also since Pε(A0|x) + Pε(A
+|x) = 1 it follows that n is geometrically

distributed with success probability Pε(A
+|x) which gives the stated expected value.

Recall that a− ∈ A− is a sequence a1, a2, . . . , an with ai ∈ A0 loops at x. Now let M(A0) be

the number of loops that lie in A0 ⊆ A0. That is, if f : A0 → < is the indicator of A0 (f(a0) = 1

if a0 ∈ A0 and f(a0) = 0 for a0 ∈ A0 \ A0) then M(A0) is the aggregate f−. Also, let t− be the

amount of time along a− spent outside of Ω(x).
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Theorem. [Theorem 4 in text] If B = W we have for some C1, D3 > 0

1 + C1ε
−r(A+) ≤ E[t|x,A(x,B,W )] ≤ D2(1, 0)C−N +D3C

−2N ε−r(A
+)

and for A0 ⊆ A0

C1C
t(A0)εr(A

0)−r(A+) ≤ E[M(A0)|x,A−] ≤ D1(r(A0))C−2N εr(A
0)−r(A+).

Moreover, limε→0E[t−/t|x,A−] = 0.

Proof. From Lemma 10 E[t|x,A−] = E[t|x,A0]/Pε(A
+|x). Moreover, recalling that t(A0) is the

number of transitions in the shortest of the least resistance paths in A0 and that since A0 contains
all zero resistance loops r(A0) = 0 and the shortest of these loops is no longer than N so t(A0) ≤ N ;
analogously, A+ contains templates without loops hence t(A+) ≤ N and consequently r(A+) ≤
Nr. Hence from Theorem 1 we have 1 ≤ E[t|x,A+] ≤ D2(1, r(A+))/CN ≤ maxr≤NrD2(1, r)/CN ,

1 ≤ E[t|x,A0] ≤ D2(1, 0)/CN and CN εr(A
+) ≤ Pε(A+|x) ≤ D1(r(A+))εr(A

+) ≤ maxr≤NrD1(r)εr(A
+).

This gives the stated bound on E[t|x,A(x,B,W )].
Next, givenA0 ⊆ A0 and f the indicator ofA0, Lemma 10 gives E[M(A0)|x,A−] = E[f−|x,A−] =

E(f |x,A0)/Pε(A
+|x) = Pε(A

0|x,A0)/Pε(A
+|x) = Pε(A

0|x)/[Pε(A0|x)Pε(A
+|x)]. Applying Theo-

rem 1 then gives

[D1(0)D1(r(A+))]−1Ct(A
0)εr(A

0)−r(A+) ≤ E[M(A0)|x,A−] ≤ D1(r(A0))C−2N εr(A
0)−r(A+).

Again making use of r(A+) ≤ Nr we have the stated bound on E[M(A0)|x,A−].
Finally by Lemma 10 E[t−/t|x,A−] ≤ E[t−/n|x,A−] = E[t−|x,A0]. Now split A0 into two

disjoint sets A0
0 of paths of zero resistance and A0

r of positive resistance, where r is the least positive
resistance in A0. Then E[t−|x,A0] = E[t−|x,A0

0]Pε[A0
0|x,A0] + E[t−|x,A0

r ]Pε[A0
r |x,A0]. However

E[t−|x,A0
0] = 0 by de�nition, while by Theorem 1

E[t−|x,A0
r ]Pε[A0

r |x,A0] ≤ [D2(1, r)/Ct(A
0
r)]D1(r)εr → 0

.

Appendix 3: Ergodic Probabilities and Bounds

Theorem. [Theorem 6 in text] If y ∈ Ω(x) then

lim
ε→0

µε(x)

µε(y)
=
µ0(x)

µ0(y)
.

Proof. Partition the matrix Pε with rows corresponding to source states and columns to target
states into P ijε where i, j = 1 corresponds to Ω(x) and i, j = 2 corresponds to Ω\Z. In particular
P 11 is square, the size of Ω(x). Correspondingly let ei be the column vectors of ones with length
corresponding to i = 1, 2. De�ne the row vector µε(z) = µε(z)/

∑
y∈Ω(x) µε(y), and partition this

vector conformally. Since µεis normalized to one on Ω(x) and µ0 is strictly positive, it su�ces to
prove that as ε→ 0 every limit point µ1

ε is equal to µ
1
0 where we include the superscript to emphasize

that we are dealing only with the invariant distribution on Ω(x). The invariance condition is
µ1
ε = µ1

εP
11
ε + µ2

εP
21
ε . Multiplying this on the right by e1 we get 1 = µ1

εP
11
ε e1 + µ2

εP
21
ε e1 while the

fact that Pε is a Markov kernel means that P 11
ε e1 +P 12

ε e2 = e1 or P 11
ε e1 = e1−P 12

ε e2. Substituting
we see that 1 = µ1

ε (e
1 − P 12

ε e2) + µ2
εP

21
ε e1 = 1 − µ1

εP
12
ε e2 + µ2

εP
21
ε e1 so that µ2

εP
21
ε e1 = µ1

εP
12
ε e2,
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which says roughly that the steady state �ow into Ω(x) must equal the steady state �ow out. As
ε → 0 P 12

ε → 0 since these are the probabilities of leaving the irreducible set Ω(x), it follows that
µ2
εP

21
ε e1 → 0. But µ2

εP
21
ε is a non-negative vector, so µ2

εP
21
ε e1 → 0 is possible only if µ2

εP
21
ε → 0.

Then in the invariance condition µ1
ε = µ1

εP
11
ε + µ2

εP
21
ε as P 11

ε → P 11
0 if µ1

00 is a limit point of µ1
ε it

must satisfy the limiting condition that µ1
00 = µ1

00P
11
0 . However, as Ω(x) is irreducible this equation

has only one solution µ1
0, so we conclude that in fact µ1

ε → µ1
0.

Recall that W are all the irreducible classes and that r(Ω(x)) = minΩ(y)∈W r(Ω(x),Ω(y)).

Theorem. [Theorem 7 in text] Allowing that Ω(x) may be empty, if A = A(x, {y}, {x} ∪ {y} ∪
(Ω\Ω(x)) are the direct routes from x to y with forbidden set {x} ∪ {y} ∪ (Ω\Ω(x)) then µε(y) ≥
µε(x)CN εr(A). There is also a constant D4 such that if x ∈ Ω(x) and there is a zero resistance path
from y to x then also µε(y) ≤ µε(x)D4ε

min{r(A),r(Ω(x))}.

Proof. We use the standard fact about Markov ergodic probabilities as used for example by Ellison
(2000): if we let Nε(y, x|x) be the expected number of times y occurs before x starting at x then
µε(y) = µε(x)Nε(y, x, |x).

The lower bound is immediate: since with probability Pε(A) we have y hit once without return-
ing to x we have from Theorem 1 µε(y) = µε(x)Nε(y, x|x) ≥ µε(x)Pε(A) ≥ µε(x)CN εr(A).

Next we suppose that y has zero resistance for getting to x ∈ Ω(x). We use the reverse condition
µε(x) = µε(y)Nε(x, y, |y), so we must �nd a lower bound on Nε(x, y|y). Let A1 = A(y, {x}, {x} ∪
{y} ∪ (Ω\Ω(x))). Observe that Nε(x, y|y) ≥ Pε(A1)Nε(x, y|x). Since there is a zero resistance path
from y to x we have from Theorem 1 the bound Pε(A1) ≥ CN , so Nε(x, y|y) ≥ CNNε(x, y|x).

Now de�ne set B = {y}∪ (Ω\Ω(x)) and A2 = A(x,B, {x}∪B). Then Nε(x, y|x) ≥ Nε(x,B|x)).
Since starting at x B and ∼ B = A2 are mutually exclusive independent events, Nε(x,B|x)) =
1/Pε(∼ B) = 1/Pε(A2). From Theorem 1 Pε(A2) ≤ D5ε

r(A2), and we getNε(x, y|y) ≥ CN ε−r(A2)/D5,
or µε(y) ≤ µε(x)D4ε

r(A2).
Finally the eventA2 is contained in the eventA(x, {y}, {x}∪{y}∪(Ω\Ω(x)))∪A(x, (Ω\Ω(x))), {x}∪

(Ω\Ω(x))). Hence

r(A2) = min{r (A(x, {y}, {x} ∪ {y} ∪ (Ω\Ω(x)))) , r (A(x, (Ω\Ω(x))), {x} ∪ (Ω\Ω(x))))}.

However r (A(x,Ω\Ω(x), {x} ∪ (Ω\Ω(x)))} = r(Ω(x)) and r (A(x, {y}, {x} ∪ {y} ∪ (Ω\Ω(x)))) =
r(A) which gives the desired upper bound.

Appendix 4: Ergodic Probabilities and Circuits

We are given a �nite set of nodes ψ ∈ Ψ and a resistance function r(ψ, φ). For any ψ ∈ Ψ we

de�ne the least resistance r(ψ) = minφ∈Ψ r(ψ, φ). We are interested in trees T on Ψ. For any such

tree and any ψ let T (ψ) denote the unique predecessor of ψ on the tree (which is null for the unique

root). Note that we follow the standard terminology that the predecessor is closer to the root - in

contrast to Young who follows the logic of the Markov process in imagining that the node closer to

the root is the successor node. The resistance of the tree T is de�ned to be r(T ) =
∑

ψ∈Ψ r(ψ, T (ψ))

where r(ψ, ∅) ≡ 0.

Our goal is to characterize least resistance trees by showing how they are constructed out

of groups of nodes that we call circuits. Say that a subset Φ ⊆ Ψ is a circuit if for each pair

φ1, ψ ∈ Φ there is a path φ1, φ2, . . . , φn ∈ Φ with φn = ψ such that for τ = 2, 3, . . . n we have
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r(φτ−1, φτ ) = r(φτ−1), that is, there is a path from φ1to ψ in Φ such that each connection has least

resistance. We say that a circuit Φ is consolidated within the tree T if there is a ψ ∈ Φ and for all

φ ∈ Φ, φ 6= ψ we have T (φ) ∈ Φ and r(φ, T (φ)) = r(φ). In other words, in the consolidated tree the

circuit Φ forms a subtree with root ψ, and each connection within the circuit has least resistance.

We refer to ψ as the top of the circuit.

Intuitively if we think of the circuit as a circle of least resistance connections then we will break

that circle after ψ to make a subtree and use ψ to connect this subtree to the the rest of the tree.

Breaking the connection saves at least r(ψ), while making the new connection costs r(ψ, T (ψ)),

hence we de�ne the modi�ed resistance from ψ to φ as R(ψ, φ) = r(ψ, φ)− r(ψ).

In the next lemma we consolidate a circuit within a tree by breaking it after the node that

minimizes modi�ed resistance. By so doing, the resistance of the tree cannot increase. The intuition

is that the system leaves the circuit most likely through such a node. Indeed, the system can remain

within Φ with least resistance transitions, so given a �xed target φ 6∈ Φ, from any node ψ ∈ Φ

the system can remain in Φ with resistance r(ψ) or go to φ with resistance r(ψ, φ) ≥ r(ψ). Since

the probability of leaving ψ is of order εr(ψ) the expected length of any visit to ψ is 1/εr(ψ);

on the other hand the probability of going to φ is of order εr(ψ,φ), so the probability of going

to φ during a visit in ψ is of order (1/εr(ψ))εr(ψ,φ); the expected number of visits to ψ for this

to occur with high probability (probability one) is then k such that k(1/εr(ψ))εr(ψ,φ) = 1, that

is 1/εr(ψ,φ)−r(ψ) = 1/εR(ψ,φ). This number of visits before exit is smallest for the ψ which has

minimum R(ψ, φ) over ψ ∈ Φ.

Lemma 11. Suppose that T has root ψ and that Φ is a circuit. Then there is a tree T ′ with root ψ
such that r(T ′) ≤ r(T ) and Φ is consolidated in T ′ with the additional properties that (1) if φ′ /∈ Φ
then T ′(φ′) = T (φ′) and (2) if φ is the top of Φ in T ′ then R(φ, T ′(φ)) = minφ′∈ΦR(φ′, T ′(φ)).

Proof. Let T have root ψ and let φ∗ ∈ Φ be such that the unique path from φ∗ to the root ψ
contains no element of Φ. If φ∗ = ψ take φ = φ∗. Otherwise choose as top a φ ∈ Φ such that
r(φ, T (φ∗))− r(φ) = minφ′∈Φ r(φ

′, T (φ∗))− r(φ′). We now use tree surgery to create a sequence of
new trees ending in the desired tree T ′. As we proceed we never cut a connection originating in
any set other than Φ so that property (1) will be satis�ed.

At each step Φ will be divided into two sets Φφ,Φ∼φ = Φ\Φφ. The �rst set Φφ will contain at
least φ and consist of those elements of Φ that are already consolidated with φ at the top, and such
that no element of Φ∼φ appears between φ and the root. We will proceed constructing new trees
by moving one element from Φ∼φ to Φφ making sure that all properties are preserved.

We start the process. If φ = ψ or φ = φ∗ we do nothing. Otherwise cut φ from the tree
and paste it to T (φ∗). Observe that this increased the modi�ed resistance of the tree by at most
r(φ, T (φ∗))−r(φ). Let Φφ be the maximal set consolidated with φ at the top: this set now contains
at least φ.

We now continue the process until Φ∼φ is empty. Pick an element φ′ ∈ Φ∼φ. Because Φ is a
circuit there is a least modi�ed resistance path in Φ from φ′ to φ. Let φτ be the last element in
Φ∼φ that is reached on this path. Then cut φτ from the tree and paste it to φτ+1. Notice that this
cannot increase the modi�ed resistance of the tree since the connection from φτ to φτ+1 has least
modi�ed resistance. Moreover, if φ 6= φ∗ then at some step φτ = φ∗ and at this step the resistance
of the tree is decreased by exactly r(φ∗, T (φ∗)) − r(φ∗). Once again let Φφ be the maximal set
consolidated with φ at the top: this set now contains at least one more element φτ .
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When we are �nished we end up with the new tree T ′. Now observe that either φ = φ∗ or the
resistance over the original tree was increased only in the �rst step, by at most r(φ, T (φ∗))− r(φ),
and it was decreased by r(φ∗, T (φ∗))− r(φ∗) when we pasted φ∗. Since by the choice of φ we have
r(φ, T (φ∗))− r(φ) ≤ r(φ∗, T (φ∗))− r(φ∗). In all other cases the resistance did not increase so that
r(T ′) ≤ r(T ). Since by construction T ′(φ) = T (φ∗) we have R(φ, T ′(φ)) = minφ′∈ΦR(φ′, T ′(φ)).

We now focus on least resistance trees. Let T (ψ) be the set of trees with root ψ, rψ =

minT∈T (ψ) r(T ) be the least resistance of any tree with root ψ and Tψ = arg minT∈T (ψ) r(T ) be

the set of least resistance trees with root ψ.

Lemma 12. If ψ, φ are in the same circuit then rψ − rφ = r(φ)− r(ψ).

Proof. Suppose ψ, φ ∈ Φ where Φ is a circuit. Then we can choose a path φ1, . . . , φν , . . . , φn ∈ Φ
with φ1 = ψ, φν = φ, φn = ψ such that for τ = 2, 3, . . . n we have r(φτ−1, φτ ) = r(φτ−1). Choose
T1 ∈ Tφ1 , and supposing that Tτ−1 has root φτ−1 de�ne Tτ as the tree in which we cut φτ
from Tτ−1, make it the root of Tτ and paste the root of Tτ−1 to φτ . This tree has root φτ and
resistance r(Tτ ) ≤ r(Tτ−1) + r(φτ−1, φτ ) − r(φτ ) = r(Tτ−1) + r(φτ−1) − r(φτ ). Hence r(Tτ ) ≤
r(T1) + r(φ1) − r(φτ ). Since φn = φ1, we conclude that r(Tn) ≤ r(T1) and since T1 had least
resistance, it must be that r(Tn) = r(T1). Hence all the inequalities must hold with equality, that
is, r(Tτ ) = r(T1) + r(φ1)− r(φτ ). Choosing τ = ν we then have r(Tτ ) = rψ + r(ψ)− r(φ), whence
rφ ≤ rψ + r(ψ)− r(φ); but by interchanging φ and ψ and rearranging we get rφ ≥ rψ + r(ψ)− r(φ),
therefore r(Tτ ) = rφ; this gives the conclusion.

We now assume that for ε > 0 Pε is ergodic so that there is a unique ergodic probability

distribution µε on the state space Z. Let TS(ψ) denote all trees over a set S with root ψ and set

Mε(x) =
∑

T∈TZ(x)

∏
x∈Z

Pε(T (x)|x).

Following Young and Freidlin and Wentzell we observe

µε(x) =
Mε(x)∑
z∈ZMε(z)

.

Let the resistance r(x, y) on Z be the ordinary resistance. Observing from Cayley's formula that

NN−2 is the number of trees with the same root over N nodes it follows that

Lemma 13. The ratio of ergodic probabilities satis�es the bounds

CN

NN−2DN
εrx−ry ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εrx−ry .

Proof. Recall the bounds Cεr(x,z) ≤ Pε(z|x) ≤ Dεr(x,z) on transition probabilities. Observe that a
sum of reals is bounded below by the largest of them and above by the largest times the number
of terms. The given bounds on the ratio µε(x)/µε(y) = Mε(x)/Mε(y) then follows.

These bounds are in terms of resistances of least resistance trees. The next goal is to translate

them in terms of appropriate resistances of least resistance paths. Take as Ψ the set W of irreducible

classes in P0, and de�ne the resistance r(ψ, φ) for ψ, φ ∈ W as the least resistance of any direct path
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from x ∈ ψ to the target φ with forbidden setW = {x}∪Ω\Ω(x) - paths which can stay in Ω(x) as

long as they do not go back to x, and when they leave it they do not touch other irreducible sets.

Note that r(ψ, φ) is independent of the particular choice of x in ψ since there are zero resistance

paths from any point in ψ to any other. As before r(ψ) = minφ∈Ψ r(ψ, φ).

Applying Lemma 12 give as immediate corollary

Theorem. [Theorem 8 in text] If the irreducible classes Ω(x) and Ω(y) are in the same circuit then

CN

NN−2DN
εr(Ω(y))−r(Ω(x)) ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εr(Ω(y))−r(Ω(x)).

This goes one step in the desired direction but applies only to elements of a given circuit. In

general, we can �nd least the least resistance of trees in Z by �nding the least resistance of trees

in W .

Lemma 14. If x ∈ ψ ∈ W then rx = rψ.

Proof. Young proves this theorem (Lemma 2 in his Appendix) for the case where the resistance,
call it r∗(ψ, φ), is the least resistance of any path from ψ to φ - that is, he allows the path to pass
through irreducible sets φ′ which are neither ψ nor φ. (Ellison does the same in his de�nition of the
modi�ed co-radius.) Our resistance is in general larger than Young's since we do not allow paths to
pass through these other irreducible sets. However, his proof requires only minor modi�cation to
yield the stronger result. Young �rst shows that the least resistance r∗ψ of any tree on W with root
ψ is greater than or equal to rx. Since rψ ≥ r∗φ we have the immediate implication that rψ ≥ rx.

The second part of Young's proof shows that r∗ψ ≤ rx. He proceeds by showing how to reorganize
a least resistance tree T ∈ Tx on Z into a tree over W with root ψ that has no greater resistance
than T . The easiest way to do this would be by simply taking one point from each irreducible class
and using the resistance between those points to get a tree over W . However, this does not work
because there can be double-counting if paths in T join between irreducible classes. Young shows
how to avoid double-counting by reorganizing the tree. We can use his construction if we can avoid
having or creating paths between irreducible classes that contain elements of a third irreducible
class. This is the case if we start by choosing the �right� least resistance tree and the �right� point
from each irreducible class before we apply Young's method.

Observe that each irreducible class is a circuit, so by Lemma 11 we can consolidate all the
irreducible classes into a tree T ′ which has no greater resistance, hence is also least resistance. So
start Young's construction with the tree T ′. The �rst step in Young's proof is to choose one point
from each irreducible class - these are what Young calls special vertices. We do this by choosing
from each irreducible class the top of the corresponding circuit in the tree T ′. Observe that because
the tree is consolidated the path from any special vertex to the next special vertex y in the direction
of the root cannot contain elements of any irreducible class other than Ω(y).

Now apply Young's construction to eliminate junctions. Observe that when Young cuts subtrees
from a vertex y that is not in an irreducible set this preserves the consolidated structure of irre-
ducible sets: those irreducible sets that lie further from the root than y in the tree are necessarily
entirely contained in the subtree. Consequently we never need to cut at junctions y that are in
irreducible sets: since the tree is consolidated the path in the tree from y to the top of the circuit
(the special vertex) has zero resistance and no double-counting is involved.

Finally, when Young pastes cuts from the junction y back into the tree he implicitly introduces
new path segments starting at y and ending at a special vertex z that has zero resistance from y.
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However, these implicit paths cannot contain elements of any irreducible set φ other than Ω(z). If
they did the path could not have zero resistance since there is no path from φ 6= Ω(z) to Ω(z) that
has zero resistance. Hence at the end of Young's procedure we �nd that the paths along which
resistance is computed - those from one special vertex to the next special vertex in the direction of
the root - do not contain a vertex from a third irreducible class. Therefore rψ ≤ rx.

Our next goal is to recursively compute rφ and by doing so �nd bounds on µε(x)/µε(y) - without

the restriction that Ω(x) and Ω(y) be in the same circuit. We suppose we are given a set Ψk−1

with resistance function rk−1(ψk−1, φk−1) and a partition of Ψk−1 into circuits ψk ∈ Ψk. As we

observed already this means considering a �higher order� time horizon. We will see that what

happens in all relevant time spans matters. Note that we will take Ψ0 = W (and not Z), so an

element ψ1 ∈ Ψ1 will be a circuit of irreducible sets. We de�ne the modi�ed resistance function

Rk−1(ψk−1, φk−1) = rk−1(ψk−1, φk−1)− rk−1(ψk−1), and we de�ne a resistance function on Ψk by

the least modi�ed resistance: rk(ψk, φk) = minψk−1∈ψk,φk−1∈φk R
k−1(ψk−1, φk−1). Recall from the

discussion on page 26 that this is actually the most likely route from ψk to φk. Then the following

formula holds, where notice that the term
∑

φk−1∈Ψk−1 rk−1(φk−1) is a constant independent of the

tree in question.

Lemma 15. If ψk−1 ∈ ψk then rk−1
ψk−1 = rk

ψk
− rk−1(ψk−1) +

∑
φk−1∈Ψk−1 rk−1(φk−1).

Proof. Suppose we have a tree T k−1 on Ψk−1 that is consolidated with respect to all the circuits
in Ψk, and let ψk−1 be its root. The fact that T k−1 is consolidated means that the top of each
circuit has a predecessor which belongs to a di�erent circuit. Let t(T k−1, ψk) ∈ Ψk−1 denote the
top of circuit ψk in T k−1. Then if T k−1(t(T k−1, ψk)) = φk−1 ∈ φk 6= ψk (where if φk−1 is null we
set φk = ∅ as well), we may de�ne T k(ψk) = φk. In this way we de�ne a tree on Ψk. We have
rk−1(T k−1) =

∑
φk−1∈Ψk−1 rk−1(φk−1, T k−1(φk−1)). However, since the tree is consolidated, for any

φk−1 not at the top of the corresponding circuit φk we have rk−1(φk−1, T k−1(φk−1)) = rk−1(φk−1),
hence we may write

rk−1(T k−1) =
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

ρk−1(t(T k−1, φk), T k−1(t(T k−1, φk))).

Now start with a least resistance tree T k−1 ∈ Tψk−1 . By Lemma 11 we may consolidate this

with respect to all the circuits in Φk to get another least resistance tree T̃ k−1 ∈ Tψk−1 . By the

previous computation and the de�nition of rk we see that

rk−1
ψk−1 = rk−1(T̃ k−1) =

∑
φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

ρk−1(t(T k−1, φk), T k−1(t(T k−1, φk)))

≥
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

rk(φk, T k(φk))

≥
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) + rkψk .

Next start with a least resistance tree T k ∈ Tψk , where ψ
k−1 ∈ ψk, and construct a tree on

Ψk−1 as follows. For the root φk = ψk de�ne φk−1 = ψk−1. For given non-root φk and T k(φk) there
are points φk−1 ∈ φk and φ̃k−1 ∈ T k(φk) such that rk(φk, T k(φk)) = r(φk−1, φ̃k−1) − r(φk−1). For
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each φk consolidate the tree over φk with root φk−1 to get a tree T [φk, φk−1]. Now de�ne a tree on
Ψk−1 by putting together these subtrees as follows: if φ̂k−1 is in T [φk, φk−1] but is not the root, set
T k−1(φ̂k−1) = T [φk, φk−1](φ̂k−1). For the root φk−1 set T k−1(φ̂k−1) = φ̃k−1. This is clearly a tree
with root ψk−1, and we see that the resistance is

rk−1
ψk−1 ≤ rk−1(T k−1) =

∑
φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

rk(φk, T k(φk))

=
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) + rkψk .

Putting together the two inequalities gives the desired result.

Lemma 16. If Ψk has at least two elements is has at least one non-trivial circuit.

Proof. Starting at an arbitrary point ψk ∈ Ψk choose a path of least resistance. Since Ψk is �nite,
this must eventually have a loop, and that loop is necessarily a circuit.

We can now recursively de�ne a class of reverse �ltrations with resistances over the set Ψ0 = W

of irreducible sets for P0; assume W has NW elements, with NW ≥ 2. As before, for ψ, φ ∈ W

the resistance r0(ψ, φ) is the least resistance of any direct path from x ∈ ψ to the target φ with

forbidden set W = {x} ∪ Ω \ Ω(x). Now starting with Ψk−1 we observe that there is at least one

non-trivial circuit, and that every singleton element is trivially a circuit. Hence we can form a

non-trivial partition of Ψk−1 into circuits, and denote this partition Ψk. As before we de�ne the

modi�ed resistance Rk−1(ψk−1, φk−1) = rk−1(ψk−1, φk−1)−rk−1(ψk−1), and the resistance function

on Ψk by the least modi�ed resistance: rk(ψk, φk) = minψk−1∈ψk,φk−1∈φk R
k−1(ψk−1, φk−1). Note

that since each partition is non-trivial, this construction has at most k ≤ NW layers before the

partition has a single element and the construction stops.

Given a reverse �ltration, for given x ∈ Ω(x) we can now de�ne ψk(x) recursively by x ∈
ψo(x), ψ0(x) ∈ ψ1(x) . . .. The modi�ed radius of x ∈ Ω(x) of order k is then de�ned by

R
k
(x) =

k∑
κ=0

rκ(ψκ(x)).

Then

Theorem. [Theorem 9 in the text] Let k be such that ψk(x) = ψk(y); then rx − ry = R
k−1

(y) −
R
k−1

(x) and consequently

CN

NN−2DN
εR

k−1
(y)−Rk−1

(x) ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εR

k−1
(y)−Rk−1

(x).

Proof. From Lemma 14 we know that rx− ry = r0
ψ0(x)− r

0
ψ0(y). Applying Lemma 15 iteratively, we

see that if ψk−1 ∈ ψk then

r0
ψ0 = rkψk +

k−1∑
κ=0

 ∑
φκ∈Ψκ

rκ(φκ)

− k−1∑
κ=0

rκ(ψκ)
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from which

r0
ψ0(x) − r

0
ψ0(y) = −

k−1∑
κ=0

rκ(ψκ(x)) +
k−1∑
κ=0

rκ(ψκ(y)) = R
k−1

(y)−Rk−1
(x).
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