Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Normal Form Finite Games

an N player game i = 1...N

P(S) are probability measure on S

finite strategy spaces S_i

 $\sigma_i \in \Sigma_i \equiv P(S_i)$ are mixed strategies

 $s \in S \equiv \times_{i=1}^{N} S_i$ are the strategy profiles, $\sigma \in \Sigma \equiv \times_{i=1}^{N} \Sigma_i$ other useful notation $s_{-i} \in S_{-i} \equiv \times_{j \neq i} S_j$

$$\sigma_{-i} \in \Sigma_{-i} \equiv \times_{j \neq i} \Sigma_j$$

 $u_i(s)$ payoff or utility; $u_i(\sigma) \equiv \sum_{s \in S} u_i(s) \prod_{j=1}^N \sigma_j(s_j)$ is expected utility

Extensive Form Finite Games

a finite game tree X with nodes $x \in X$

nodes are partially ordered and have a single root (minimal element)

terminal nodes are $z \in Z$ (maximal elements)

Players and Information Sets

player 0 is nature

```
information sets h \in H are a partition of X \setminus Z
```

each node in an information set must have exactly the same number of immediate followers

each information set is associated with a unique player who "has the move" at that information set

 $H_i \subset H$ information sets where *i* has the move

More Extensive Form Notation

information sets belonging to nature $h \in H_0$ are singletons

```
A(h) feasible actions at h \in H
```

each action and node $a \in A(h), x \in h$ is associated with a unique node that immediately follows x on the tree

each terminal node has a payoff $r_i(z)$ for each player

by convention we designate terminal nodes in the diagram by their payoffs

Behavior Strategies

a *pure strategy* is a map from information sets to feasible actions $s_i(h_i) \in A(h_i)$

a *behavior strategy* is a map from information sets to probability distributions over feasible actions $\pi_i(h_i) \in P(A(h_i))$

Nature's move is a behavior strategy for Nature and is a fixed part of the description of the game

We may now define $u_i(\pi)$

normal form are the payoffs $u_i(s)$ derived from the game tree

Basic Concepts

- extensive versus normal form
- strategies versus behavior strategies
- Kuhn's Theorem
- weak and strong dominance
- iterated dominance and rationalizability
- best-response correspondences
- Nash equilibrium
- σ is a *Nash equilibrium* profile if for each $i \in 1,...N$ $u_i(\sigma) = \max_{\sigma'_i} u_i(\sigma'_i, \sigma_{-i})$

7

existence in mixed strategies in finite games

Important Special Classes of Games

- prisoner's dilemma
- coordination games
- ♦ zero-sum games
- chain store game
- ♦ chicken
- Bayes games

Refinements of Nash Equilibrium

- trembling hand perfection
- agent normal form
- subgame perfection
- sequentiality

Extensions of Nash Equilibrium

- correlated equilibrium
- self-confirming equilibrium
- ♦ approximate equilibria
 - A small portion of the population playing "non-optimally" may significantly change the incentives for other players causing a large shift in equilibrium behavior
- Quantal Response Equilibrium

Quantal Response Equilibrium

(McKelvey and Palfrey)

propensity to play a strategy

 $p_i(s_i) = \exp(\lambda_i u_i(s_i, \sigma_{-i}))$

 $\sigma_i(s_i) = p_i(s_i) / \sum_{s_i} p_i(s_i')$

as $\lambda_i o \infty$ approaches best response

as $\lambda_i \rightarrow 0$ approaches uniform distribution

Smoothed Best Response Correspondence Example

$$\begin{array}{c|c} \mathsf{L}(\sigma_{2}(L)=q) & \mathsf{R} \\ \\ \mathsf{U}(\sigma_{1}(U)=p) & \boxed{1,1} & 0,0 \\ \\ \mathsf{D} & 0,0 & 1,1 \end{array}$$

12

Goeree and Holt: Matching Pennies

Symmetric

	50% (48%)	50% (52%)
50% (48%)	80,40	40,80
50% (52%)	40,80	80,40

	12.5% (16%)	87.5% (84%)
50% (96%)	320,40	40,80
50% (4%)	40,80	80,40

	(80%)	(20%)
50% (8%)	44,40	40,80
50% (92%)	40,80	80,40

Sequentiality

Kreps-Wilson [1982]

Subforms

Beliefs: assessment a_i for player *i* probability distribution over nodes at each of his information sets; *belief* for player *i* is a pair $b_i \equiv (a_i, \pi^i_{-i})$, consisting of *i*'s assessment over nodes a_i , and *i*'s expectations of opponents' strategies $\pi^i_{-i} = (\pi^i_j)_{j \neq i}$

Beliefs come from strictly positive perturbations of strategies

belief $b_i \equiv (a_i, \pi_{-i}^i)$ is *consistent* (Kreps and Wilson [17]) if $a_i = \lim_{n \to \infty} a_i^n$ where a_i^n obtained using Bayes rule on a sequence of strictly positive strategy profiles of the opponents, $\pi_{-i}^{i,m} \to \pi_{-i}$

given beliefs we have a well-defined decision problem at each information set; can define optimality at each information set

A sequential equilibrium is a behavior strategy profile π and an assessment a_i for each player such that (a_i, π^i_{-i}) is consistent and each player optimizes at each information set

Signaling Cho-Kreps [1987]

sequential vs. trembling hand perfect pooling and separating

The Holdup Problem

- Chari-Jones, the pollution problem
- problem of too many small monopolies

 ρ is the profit generated by an invention with a monopoly with a patent, drawn from a uniform distribution on [0,1], private to the inventor

 ϕ^F is the fraction of this profit that can be earned without a patent

To create the invention requires as input N other existing inventions

It costs $\varepsilon\,/\,N$ to make copies of these other inventions, where $\varepsilon<1/2$ and $\varepsilon\,/\,\phi^F<1$

Case 1: Competition

if $\phi^F \rho \ge \varepsilon$ the new invention is created, probability is $1 - \varepsilon / \phi^F$.

Case 2: Patent

Each owner of the existing inventions must decide a price p_i at which to license their invention.

Subgame Perfection/Sequentiality implies that the new invention is created when $\phi \rho \geq \sum_i p_i$

Profit of preexisting owners $(1 - (N - 1)p - p_i)p_i$

FOC
$$1 - (N - 1)p - 2p_i = 0$$

unique symmetric equilibrium p = 1/(N+1)

corresponding probability of invention is 1/N