e201b: practice final exam—suggested answers

[Since we did the first two questions during section, I'll be brief in answering questions one and two.]

be nice

The normal form of this game looks as follows.

	in	out
N	2, 2	0,1
M	3 ,0	1,1

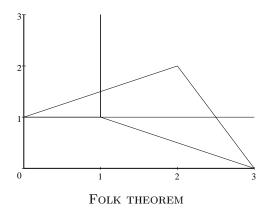
From the point of view of player 1 (the long-run player) the Nash-equilibrium payoff is 1, and the minmax is also 1. Hence, $\underline{v}=1$, the worst dynamic equilibrium payoff. Since M dominates N, the only equilibrium of the stage game is (M, out). The pure precommittment Stackelberg payoff is 2, and since N is strictly dominated by M, the mixed precommittment Stackelberg payoff is also 2. Therefore, $\overline{v}=2$. For what values of δ are these extreme equilbrium payoffs attainable in an infinitely repeated game? For \overline{v} to be attained, we have the following conditions.

$$\overline{v} = (1 - \delta)2 + \delta w(N)$$

$$\overline{v} \geq (1 - \delta)3 + \delta w(M) \geq (1 - \delta)3 + \delta$$

$$2 \geq (1 - \delta)3 + \delta \Rightarrow \delta \geq 1/3.$$

So we need $\delta \geq 1/3$ to sustain a dynamic equilibrium paying 2 to player 1. When players 1 and 2 have the same discount factor, δ , the set of perfect equilibrium payoffs is the set of socially feasible, individually rational payoffs.



So for δ sufficiently close to unity, payoffs in the intersection of the L and the polyhaedron are attainable in perfect equilibrium.

long run consumers

The normal form of this game looks as follows.

	send	with hold
pay	3,2	0,1
cheat	5 ,0	0,1

Minmax equals Static Nash equals 0 equals \underline{v} for player 1. Pure precommitteent Stackelberg is 3, and mixed precommitteent is also 3, since pay is weakly dominated by cheat, so \overline{v} is also 3. First suppose that firms can condition on player 1's actions. Then

$$\overline{v} = (1 - \delta)3 + \delta w(pay)$$

$$\overline{v} \geq (1 - \delta)5 + \delta w(cheat) \geq (1 - \delta)5$$

$$3 > (1 - \delta)5 \Rightarrow \delta > 2/5.$$

So $\overline{v} = 3$ is attainable for $\delta \ge 2/5$. Now assume that firms cannot condition on the consumer's actions. They are only able to react to whether or not the check arrived. Denote by \checkmark the event that the check arrived, and? the event that it didn't. Then

$$\overline{v} = (1 - \delta)3 + \delta(w(\checkmark)/2 + w(?)/2)$$

$$\overline{v} \ge (1 - \delta)5 + \delta w(?)$$

We want to make \overline{v} as large as possible, so we'll make $w(\checkmark) = \overline{v}$, and we'll make w(?) as possible by making the IC constraint bind with equality. Hence,

$$\overline{v} = (1 - \delta)3 + \delta(\overline{v}/2 + w(?)/2)$$

$$\overline{v} = (1 - \delta)5 + \delta w(?)$$

$$\Rightarrow \overline{v} = 1.$$

The values of δ for which this payoff is supportable by perfect public equilibrium strategies can be found by using the constraint that $\overline{v} \geq (1 - \delta)5 + \delta w(?) \geq (1 - \delta)5$, since the worst possible punishment that can be inflicted here is zero.

$$1 \ge (1 - \delta)5 \Rightarrow \delta \ge 4/5$$
.

bargaining

Here the issue is that it will be credible for player two to refuse certain offers. Player two will reject an offer, m_2 if $m_2 - c(10 - m_2) < 0$, that is, if $m_2 < 10c/(1 + c)$. So player one wants to solve the following problem.

$$\max \qquad 10 - m_2 - cm_2$$
s.t.
$$m_2 \ge \frac{10c}{1+c}$$

where m_2 is allowed to vary between 1 and 9. Clearly player one wants to minimize m_2 , so the optimum is $m_2^* = \lceil 10c/(1+c) \rceil$, where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x.

mechanism design

We have that $v_1 > v_2 > 0$ and $u_i(p) = \ln(v_i - p)$. I'm going to further suppose that $v_1 > v_2 > 1$. The seller's optimization problem looks like this.

$$\begin{aligned} \max & & \pi_1 p_1 + \pi_2 p_2 \\ \text{s.t.} & & \pi_i \ln(v_i - p_i) \ge \pi_{\neg i} \ln(v_i - p_{\neg i}) \\ & & \pi_i \ln(v_i - p_i) \ge 0 \\ & & \pi_i \in [0, 1]. \end{aligned}$$

Only the IC constraint for the high type and the IR constraint for the low type will bind. In this case, we already have the following restrictions: $p_2 = v_2 - 1$ and $\ln(v_1 - p_1) = \ln(v_1 - (v_2 - 1))^{\pi_2/\pi_1}$, so $p_1 = v_1 - (v_1 - (v_2 - 1))^{\pi_2/\pi_1}$. Now let's calculate the first-order conditions. Let λ denote the Lagrange multiplier associated with the high type's IC constraint, μ the multiplier for the low type's IR constraint, and η_i the multiplier for the constraint that $\pi_i \leq 1$. Then first-order conditions look like

$$p_{1} : \pi_{1} = \frac{\lambda \pi_{1}}{v_{1} - p_{1}} \Rightarrow \lambda = v_{1} - p_{1}$$

$$\pi_{1} : p_{1} + \lambda \ln(v_{1} - p_{1}) = \eta_{1}$$

$$p_{2} : \pi_{2} + \frac{\lambda \pi_{2}}{v_{1} - p_{2}} = \frac{\mu}{v_{2} - p_{2}}$$

$$\pi_{2} : p_{2} - \lambda \ln(v_{1} - p_{2}) = \eta_{2}$$
(*)

Look at (*). I claim that $\eta_1 > 0$, so that $\pi_1 = 1$. If not, then $\eta_1 = 0$ would make (*) look like $p_1 = -\lambda \ln(v_1 - p_1) = -(v_1 - p_1) \ln(v_1 - p_1) = -(v_1 - p_1) \ln(v_1 - (v_2 - 1))^{\pi_2/\pi_1}$ by replacing our expression for p_1 derived from the IC constraint above. Now, $v_1 - (v_2 - 1) = 1 + v_1 - v_2 > 1$, so certainly $(v_1 - (v_2 - 1))^{\pi_2/\pi_1} > 1$ and it follows that $p_1 = -(v_1 - p_1) \ln(v_1 - (v_2 - 1))^{\pi_2/\pi_1} < 0$, which is a contradiction. Therefore, $\pi_1 = 1$, and so $p_1 = v_1 - (v_1 - (v_2 - 1))^{\pi_2}$. Now, notice that if $\pi_2 = 1$, then it better be that $p_2 = p_1$, since otherwise the IC constraint for the high type will be violated. But with $\pi_2 < 1$, it follows from the first-order conditions for π_2 that $p_2 = \lambda \ln(v_1 - p_2)$. Substituting for λ , p_1 , and p_2 we get

$$\begin{array}{rcl} v_2 - 1 & = & (v_1 - p_1) \ln(v_1 - (v_2 - 1)) \\ \Rightarrow v_2 - 1 & = & (v_1 - (v_2 - 1))^{\pi_2} \ln(v_1 - (v_2 - 1)) \\ \Rightarrow \ln(v_2 - 1) & = & \pi_2 \ln(v_1 - (v_2 - 1)) + \ln(\ln(v_1 - (v_2 - 1))) \\ \Rightarrow \pi_2 & = & \frac{\ln(v_2 - 1) - \ln(\ln(v_1 - (v_2 - 1)))}{\ln(v_1 - (v_2 - 1))}. \end{array}$$

Please tell me if you disagree with this.