Copyright (C) 2018 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of the Creative Commons Attribution license at

https://creativecommons.org/licenses/by/4.0/

Repeated Games

Long Run versus Short Run Player

a fixed simultaneous move stage game

Player 1 is long-run with discount factor δ actions $a^1 \in A^1$ a finite set utility $u^1(a^1,a^2)$

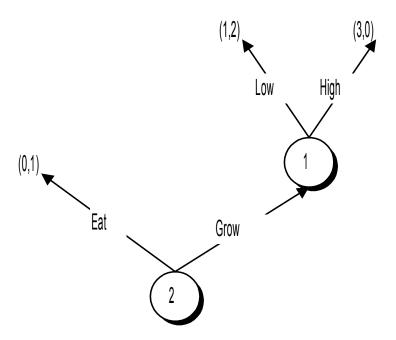
Player 2 is short-run with discount factor 0 actions $a^2 \in A^2$ a finite set utility $u^2(a^1,a^2)$

What it is about

the "short-run" player may be viewed as a kind of "representative" of many "small" long-run players

- ♦ the "usual" case in macroeconomic/political economy models
- ♦ the "long run" player is the government
- ♦ the "short-run" player is a representative individual

Example 1: Peasant-Dictator



Example 2: Backus-Driffil

Low High 0,0 -2,-1 Low

High 1,-1 -1,0

Inflation Game: LR=government, SR=consumers consumer preferences are whether or not they guess right

> High Low

0,0 0,-1 Low High

-1,-1 -1,0

with a hard-nosed government

Repeated Game

history $h_t = (a_1, a_2, ..., a_t)$

null history h_0

behavior strategies $\alpha_t^i = \sigma^i(h_{t-1})$

long run player preferences

average discounted utility

$$(1-\delta)\sum_{t=1}^{T}\delta^{t-1}u^{i}(a_{t})$$

note that average present value of 1 unit of utility per period is 1

Equilibrium

Nash equilibrium: usual definition – cannot gain by deviating
Subgame perfect equilibrium: usual definition, Nash after each history
Observation: the repeated static equilibrium of the stage game is a subgame perfect equilibrium of the finitely or infinitely repeated game

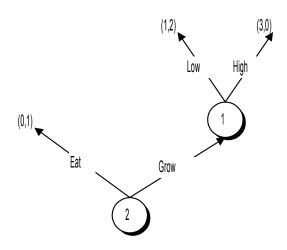
◆ strategies: play the static equilibrium strategy no matter what

"perfect equilibrium with public randomization"

may use a public randomization device at the beginning of each period to pick an equilibrium

key implication: set of equilibrium payoffs is convex

Example: Peasant-Dictator



normal form: unique Nash equilibrium high, eat

eat	grow
Jul	9.011

low

high

0*,1	1,2*
0*,1*	3*,0

Static Benchmarks

payoff at static Nash equilibrium to LR player: 0

precommitment or Stackelberg equilibrium precommit to low get 1 mixed precommitment to 50-50 get 2

minmax payoff to LR player: 0

Payoff Space

utility to long-run player

```
mixed precommitment/Stackelberg = 2

best dynamic equilibrium = ?

pure precommitment/Stackelberg = 1

Set of dynamic equilibria

static Nash = 0

worst dynamic equilibrium = ?

minmax = 0
```

Repeated Peasant-Dictator

finitely repeated game

final period: high, eat, so same in every period

Do you believe this??

◆ Infinitely repeated game

begin by low, grow

if low, grow has been played in every previous period then play low, grow

otherwise play high, eat (reversion to static Nash)

claim: this is subgame perfect

When is this an equilibrium?

clearly a Nash equilibrium following a history with high or eat SR play is clearly optimal

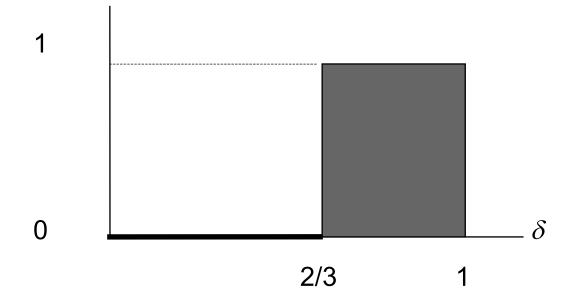
for LR player $\label{eq:constraint} \text{may high and get } (1-\delta)3+\delta0$ or low and get 1

so condition for subgame perfection

$$(1 - \delta)3 \le 1, \delta \ge 2/3$$

Equilibrium Utility

equilibrium utility for LR



General Deterministic Case

Fudenberg, Kreps and Maskin

 $+\max u^{1}(a)$ - mixed precommitment/Stackelberg \overline{v}^1 best dynamic equilibrium pure precommitment/Stackelberg Set of dynamic equilibria -static Nash $-\underline{v}^1$ worst dynamic equilibrium - minmax \perp min $u^1(a)$

Characterization of Equilibrium Payoff

 $\alpha = (\alpha^1, \alpha^2)$ where α^2 is a b.r. to α^1

 α represent play in the first period of the equilibrium $w^1(a^1)$ represents the equilibrium payoff beginning in the next period

$$v^{1} \ge (1 - \delta)u^{1}(a^{1}, \alpha^{2}) + \delta w^{1}(a^{1})$$

$$v^{1} = (1 - \delta)u^{1}(a^{1}, \alpha^{2}) + \delta w^{1}(a^{1}), \alpha^{1}(a^{1}) > 0$$

$$\underline{v}^{1} \le w^{1}(a^{1}) \le \overline{v}^{1}$$

Simplified Approach

impose stronger constraint using n static Nash payoff

for best equilibrium $n \leq w^1(a^1) \leq \overline{v}^1$

for worst equilibrium $\underline{v}^1 \leq w^1(a^1) \leq n$

avoids problem of best depending on worst

remark: if we have static Nash = minmax then no computation is neede for the worst, and the best calculation is exact.

max problem

fix $\alpha = (\alpha^1, \alpha^2)$ where α^2 is a b.r. to α^1

$$\overline{v}^{1} \ge (1 - \delta)u^{1}(a^{1}, \alpha^{2}) + \delta w^{1}(a^{1})$$

$$\overline{v}^{1} = (1 - \delta)u^{1}(a^{1}, \alpha^{2}) + \delta w^{1}(a^{1}), \alpha^{1}(a^{1}) > 0$$

$$n^{1} \le w^{1}(a^{1}) \le \overline{v}^{1}$$

how big can $w^1(a^1)$ be in = case?

Biggest when $u^1(a^1,\alpha^2)$ is smallest, in which case

$$w^{1}(a^{1}) = \overline{v}^{1}$$

$$\overline{v}^{1} = (1 - \delta)u^{1}(a^{1}, \alpha^{2}) + \delta \overline{v}^{1}$$

Summary

conclusion for fixed α

$$\min_{a^1 \mid \alpha(a^1) > 0} u^1(a^1, \alpha^2)$$

i.e. worst in support

$$\overline{v}^1 = \max_{\alpha^2 \in BR^2(\alpha^1)} \min_{a^1 \mid \alpha(a^1) > 0} u^1(a^1, \alpha^2)$$

observe:

mixed precommitment $\geq \overline{v}^1 \geq \text{pure precommitment}$

Peasant-Dictator Example

low

high

eat	grow
0*,1	1,2*
0*,1*	3*,0

p(low)

BR

worst in support

1	grow	1
½ <p<1< td=""><td>grow</td><td>1</td></p<1<>	grow	1
p=1/2	any mixture	≤ 1 (low)
0 <p<1 2<="" td=""><td>eat</td><td>0</td></p<1>	eat	0
p=0	eat	0

Check the constraints

$$w^{1}(a^{1}) = \frac{\overline{v}^{1} - (1 - \delta)u^{1}(a^{1}, \alpha^{2})}{\delta} \ge n^{1}$$

as $\delta \to 1$ then $w^1(a^1) \to \overline{v}^1 \ge n^1$

min problem

fix $\alpha = (\alpha^1, \alpha^2)$ where α^2 is a b.r. to α^1

$$\underline{v}^{1} \ge (1 - \delta)u^{1}(a^{1}, \alpha^{2}) + \delta w^{1}(a^{1})$$

$$\underline{v}^{1} \le w^{1}(a^{1}) \le n^{1}$$

Biggest $u^1(a^1, \alpha^2)$ must have smallest $w^1(a^1) = \underline{v}^1$

$$\underline{v}^{1} = (1 - \delta)u^{1}(a^{1}, \alpha^{2}) + \delta\underline{v}^{1}$$

conclusion

$$\underline{v}^1 = \max u^1(a^1, \alpha^2)$$

or

 $\underline{v}^1 = \min_{\alpha^2 \in BR^2(\alpha^1)} \max u^1(\alpha^1, \alpha^2)$, that is, constrained minmax

Worst Equilibrium Example

	L	M	R
U	0,-3	1,2	0,3
D	0,3*	2,2	0,0

static Nash gives 0
minmax gives 0
worst payoff in fact is 0
pure precommitment also 0

mixed precommitment

P is probability of up

to get more than 0 must get SR to play M

$$-3p + (1-p)3 \le 2$$
 and $3p \le 2$

first one

second one

$$-3p + (1-p)3 \le 2$$

$$3p \le 2$$

$$-3p - 3p \le -1$$

$$p \le 2/3$$

$$p \ge 1/6$$

want to play D so take p = 1/6

get
$$1/6 + 10/6 = 11/6$$

Utility to long-run player

 $-\max u^{1}(a) = 2$ mixed precommitment/Stackelberg=11/16 \overline{v}^1 best dynamic equilibrium=1 pure precommitment/Stackelberg=0 Set of dynamic equilibria -static Nash=0 y^1 worst dynamic equilibrium=0 minmax=0 min $u^{1}(a) = 0$

calculation of best dynamic equilibrium payoff

P is probability of up

p

 BR^2

worst in support

<1/6	L	0
1/6< <i>p</i> <5/6	M	1
p>5/6	R	0

so best dynamic payoff is 1