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Econometrica, Vol. 61, No. 5 (September, 1993), 989-1018 

GLOBAL GAMES AND EQUILIBRIUM SELECTION' 

BY HANS CARLSSON AND ERIC VAN DAMME 

A global game is an incomplete information game where the actual payoff structure is 
determined by a random draw from a given class of games and where each player makes a 
noisy observation of the selected game. For 2 x 2 games, it is shown that, when the noise 
vanishes, iterated elimination of dominated strategies in the global game forces the 
players to conform to Harsanyi and Selten's risk dominance criterion. 

KEYwORDS: Global games, equilibrium selection, risk dominance, payoff uncertainty, 
incomplete information, common knowledge, iterated dominance. 

1. INTRODUCTION 

ANY MODEL, BY ITS NATURE, is based on assumptions that schematize and 
simplify the phenomena under investigation. The basic assumption underlying 
main-stream game-theoretic models is that the rules of the game, including its 
payoff structure and the rationality of the players, are common knowledge. 
There seems to be almost general agreement that game theory's agents are 
excessively rational and well-informed in comparison with their real-life coun- 
terparts. One way of assessing the role of this kind of assumption is to compare 
the model with perturbed variants that are based on slightly modified assump- 
tions. In this manner, Harsanyi's (1973) games with randomly disturbed payoffs 
and Selten's (1975) concept of trembling-hand perfection perturb certain as- 
pects of game theory's information and rationality assumptions. Analyzing such 
richer models may yield considerable benefits: Harsanyi's approach produces a 
plausible justification and interpretation of mixed strategy equilibria while 
Selten's approach frequently leads to a drastic reduction in the number of 
possible solutions. 

The present paper pursues this line of research by analyzing an incomplete 
information model-to be called a global game-which is based on a perturba- 
tion of the players' payoff information in 2 x 2 games. The game to be played is 
determined by a random draw from some subclass of all 2 x 2 games. Each 
player observes the selected game with some noise and then chooses one of his 
two available actions. If the initial subclass of games is large enough and 
contains games with different equilibrium structures, iterated elimination of 
dominated strategies in the incomplete information game yields a surprising 
result: When the 2 x 2 game actually selected by Nature is one with two strict 
Nash equilibria, iterated dominance forces the players to coordinate on the 
equilibrium which is risk-dominant in the sense of Harsanyi and Selten (1988), 

1This paper is a combination and substantial generalization of Carlsson (1989) and Carlsson and 
van Damme (1989). Some basic ideas on global games and their relation to risk dominance originate 
from a note written by Carlsson in 1988. The authors thank Reinhard Selten, Lars-Gunnar 
Svensson, J6rgen Weibull, and various seminar audiences for helpful comments. The constructive 
criticism from an editor and several referees considerably improved the paper's quality. Carlsson 
gratefully acknowledges financial support from the Swedish Council for Research in the Humanities 
and Social Sciences and the Jan Wallander Foundation. 
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provided that the amount of noise in the players' observations is sufficiently 
small. 

The result is surprising because strict equilibria have proved to be immune 
against most perturbations and refinement criteria; for instance, any strict 
equilibrium survives strategic stability a la Kohlberg and Mertens (1986). More 
specifically, our result goes against Harsanyi's (1973) conclusion that, generi- 
cally, any Nash equilibrium in a normal form game can be approximated by 
equilibria of games with randomly disturbed payoffs. The explanation of this 
apparent contradiction is that we use a quite different payoff perturbation: In 
Harsanyi's set-up the payoff matrices of different players are independent and 
each player only learns his own matrix. Hence, the players' observations are 
uncorrelated so a player's beliefs do not depend on his information but are 
common knowledge. By contrast, in our model, both players make noisy obser- 
vations of the entire game. As a result, different players' observations are 
correlated and a player's (first and higher order) beliefs depend on his observa- 
tion. For a more extensive comparison between the two models, we refer to 
Section 7.2, where we also briefly raise the question regarding their relative 
appropriateness, and to Appendix B where we construct a hybrid model that 
contains our model and Harsanyi's as special cases. 

Our result is driven by the fact that, in a global game, the uncertainty forces 
the players to take account of the entire class of a priori possible games which 
may be large even if the amount of noise is small. When the class contains 
games with different equilibrium structures, players have to switch actions at 
some points in their observation spaces. Equilibrium selection in accordance 
with risk dominance results from the conditions which optimally chosen switch- 
ing points must satisfy in the limit, as noise vanishes. Hence, there is a certain 
parallel between our approach and the axiomatic models which, starting with 
Nash's (1950, 1953) bargaining analyses, derive determinate solutions to individ- 
ual games by imposing consistency requirements on classes of games. An 
important difference, though, is that in the present model the consistency 
conditions-instead of simply being postulated-are derived from more basic 
assumptions about the players' information in a full-fledged noncooperative 
game. This feature also distinguishes our approach from existing equilibrium 
selection theories-such as Harsanyi and Selten's (1988) tracing pro- 
cedure-where the solution to a game typically results from the application of 
some more or less ad hoc scheme of expectation formation. Hence our ap- 
proach can be viewed as an attempt to extend Nash's (1951) program of 
providing noncooperative foundations for axiomatic solution concepts. 

The various links between this paper and the above cited works will be given 
a more extensive discussion later. At present we will study a simple example 
which catches the basic intuition for our result. This will be a suitable context 
for providing an explicit definition of the notion of risk dominance for 2 x 2 
games. 

Let g(x) be the 2 x 2 game shown in Figure 1, and consider the class of 
games {g(x)}x E R. Note that g(x) has strict dominance solution a = (a 1, a2) for 
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FIGURE 1.-Game g(x). 

x > 4 and 13 - (/31,/32) for x < 0. If x e (0, 4), both a and /8 are strict Nash 
equilibria. Then, according to Harsanyi and Selten (1988), a risk-dominates 13 if 
a is associated with the largest product of deviation losses and vice versa. These 
products are given by x2 for a and (4 - x)2 for 13, so a is risk-dominant in g(x) 
if x E (2,4) while 13 is risk-dominant for x E (0, 2). To see the intuition for the 
risk dominance criterion, note that each player will choose a or 18 according as 
he believes that the probability of the opponent playing 1 is smaller or larger 
than x/4. Hence, if x < 2, playing 1 is less risky than playing a in the sense 
that, for each player, 13 is justified by a larger range of beliefs about the 
opponent's action. 

For g(x) with x E (2,4), playing a can be motivated by an analogous 
argument. In these games, however, there is a conflict between risk dominance 
and payoff dominance: Although a is risk-dominant both players prefer the 
outcome (4,4) associated with 1. Many people feel it is obvious that 13 should 
be selected in this case. Harsanyi and Selten, too, consider that payoff domi- 
nance should be given precedence over risk dominance. We will now show how, 
in our approach, rational players are forced to pick the risk-dominant equilib- 
rium even when the other equilibrium is Pareto-preferred. 

Consider the incomplete information game where x is the realization of a 
random variable X which is uniform on some interval [x, x] such that x < 0 and 
x > 4; given x, each player i makes an observation corresponding to a random 
variable Xi which is uniform on [x - E, x + E] for some E > 0, the two players' 
observation errors Xl - x and X2 - x being independent; having made their 
observations, the players choose actions simultaneously and get payoffs corre- 
sponding to g(x). It is understood that the structure of the class of games and 
the joint distribution of X, X1 and X2 are common knowledge. 

It is easily seen that player i's posterior of X will be uniform on [xi - E, xi + E] 
if he observes xi e [x + E, T - E], so his conditionally expected payoff from 
choosing ai will simply be xi. Moreover, for xi E [x + r, x - E], the conditional 
distribution of the opponent's observation Xj will be symmetric around xi and 
have support [xi - 2?, xi + 2?]. Hence, Prob{Xj <xixi} = Prob{Xj >xiJx} = 

1/2. 

Now assume E < -x/2 and suppose i observes xi < 0. Then his conditionally 
expected payoff from choosing ai is certainly negative and, thus, smaller than 
the payoff associated with 13i. Hence /3i is conditionally (strictly) dominant for i 
when he observes xi < 0. It should be clear that iterated dominance arguments 
allow us to get further. For instance, if player 2 is restricted to playing 132 for 
observations x2 < 0, then player 1, observing xl = 0, must assign at least 
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probability 1/2 to f32. Consequently, l's conditionally expected payoff from 
playing 81 will be at least 2, so a, (which yields 0) can be excluded by iterated 
dominance for xl = 0. Let x* be the smallest observation for which 8i cannot 
be established by iterated dominance. By symmetry, obviously, x =x24= x 
Iterated dominance requires player i to play pi for any xi <x*, so if j observes 
x* he will assign at least probability 1/2 to i's choosing Pi and, thus, j's 
expected payoff from choosing 8j will be at least 2. Since j's expected payoff 
from choosing aj equals x*, we must have x* > 2, for otherwise iterated 
dominance would require j to play 8j when he observes x*. 

Proceeding in the same way for large values of the observations, we see that, 
for E < (x - 4)/2, ai is dominant for each player if xi > 4. Letting x** denote 
the lower bound on the iterated dominance region for a, we find that, if j 
observes x**, his expected payoff from choosing 83j will be at most 2 given that 
i conforms to iterated dominance. Since x** equals j's expected payoff from 
choosing aj, we conclude that x** < 2. Combining this with the above and the 
obvious fact that x* Ax**, we get 

x* =x** = 2. 

In words, iterated dominance in the global game forces equilibrium selection in 
accordance with risk dominance in the sense that each player i should play the 
risk-dominant equilibrium of g(xi) for any xi E (0, 2) U (2,4). As the reader may 
have noticed, this does not imply that players always coordinate on the risk- 
dominant equilibrium of the actual game g(x). However, such coordination will 
be ensured if, for given x, one requires E to be small enough (pick E < Ix - 21). 

The main purpose of the paper is to show that the above result holds in a 
fairly general way for 2 x 2 games. In particular the result will be shown not to 
depend on the symmetries exploited in the example nor on the exact shapes of 
the probability distributions nor on the underlying class of games being one- 
dimensional. On the other hand, from the previous argument it is clear that we 
do need some assumption on the class of games. The result depends critically on 
the existence-within this class-of a subclass of dominance solvable games 
that serve as take-offs for the iterated dominance argument, and, thus, exert a 
kind of remote influence on the games with multiple equilibria. 

To illustrate the last point and to get a more detailed intuition for our result, 
let us assume that x = 3 so that Nature has selected the game g(3) where /8 is 
Pareto-dominant but a is risk-dominant. Assuming that E is small, say 8 < 1/4, 
both players will know these fact5 about a and /3 from their observations 
x1, x2 E [3 - , 3 + 8]. Each player will even know that his opponent knows that 
,/ is a Pareto-dominant equilibrium (observing xi, i knows that the conditional 
support of X given xi belongs to [xi - 3E, xi + 38]). Why, then, cannot the 
players coordinate on ,3? The reason is that their choices at xl and x2 have to 
be part of a consistent plan for all possible observations. By the strict domi- 
nance of ai for xi > 4, each player would have to switch from ai to 8i at some 
observation x* E [3,4]. However, given any switching point XJ for the oppo- 
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nent, each player would like to switch slightly below x7 as long as xe > 2. 
Hence the result. 

The key to understanding the phenomenon is the realization that there is a 
sharp separation between knowledge and common knowledge in a global game. 
Even though, when their observations are close to 3, the players know that ,B is 
the Pareto-dominant equilibrium and even though, for small E, each knows that 
the other knows this, this information is not common knowledge for any positive 
E. As a matter of fact, the only information that is common knowledge is that 
some game g(x) with xe [x,5] has to be played. This lack of common 
knowledge enables remote areas (viz. those where a or : is the dominance 
solution) to influence the behavior when the observations are close to 3. This 
phenomenon also supplies a deeper motivation for using the term global games: 
When determining rational behavior it is not enough to look at the equilibrium 
structure that is known to prevail; it must also be ensured that the chosen action 
is part of a consistent plan for all situations that could have occurred within the 
underlying class of games. 

The remainder of the paper is organized as follows: Section 2 introduces the 
notation that will be used for 2 x 2 games and provides a convenient alternative 
characterization of the risk dominance relation for such games. In Section 3 we 
formally define global games and state our main result, which is proved in 
Section 4. Section 5 discusses the role of our assumptions, while Section 6 
discusses the result, in particular its relationship to Harsanyi and Selten's 
justification of risk dominance and to Nash's works. Section 7 deals with related 
literature on games with payoff uncertainty and Section 8 concludes. 

2. 2 x 2 GAMES AND RISK DOMINANCE 

This section introduces notation and definitions to be used in the subsequent 
analysis. A 2 x 2 game is a two-person normal form game where each player 
i E {1, 2} can choose between two pure actions ai and 8i3. Let G be the set of all 
2 x 2 games. Clearly, since such a game is fully described by its eight payoff 
entries, G can be identified with R8. For g E G, a mixed action for player i is a 
probability distribution si on {ai, f3i}. We identify si with the probability which 
si assigns to ai. If s = (Sl, S2) is an action pair, we write gi(s) for player i's 
expected payoff when s is played in g. Moreover, we write gfa (resp. go) for the 
loss that i incurs by deviating unilaterally from the action pair a= (a1, a2) 

(resp. /3 - (31,32)). Hence for i, j E {1, 2}, i = j, 

ga =gi (a) -gi (8i, aj), 

91 = gi ( 13) - gi (ai 1j) , 

For y E {a, ,3}, Gy is the set of games where y is a strict Nash equilibrium: 

G= {ge G: g7 >0 for i= 1,2= 
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D7 denotes the subset of GP where yi is a strictly dominant action for player i: 

D a= {geGa:gg3<O}, 

Di= (gE G :ga <0), 

and Dy denotes the set of games for which y is the iterated dominance 
solution: 

D7 =D'1 UD2. 

Generically, games in G have one or three equilibria. In the latter case, there 
is one (weak) equilibrium in mixed strategies as well as two (strict) pure strategy 
equilibria. We may, without loss of generality, focus on the case where both a 
and ,B are strict equilibria. For g E Ga n GI, a is said to risk-dominate ,3 if the 
product of deviation losses is larger at a than at ,B, i.e. if 

(2.1) gaga> gJg, 

while ,B risk-dominates a if the reverse inequality holds. 
The basic intuition behind risk dominance stands out more clearly in the 

following alternative characterization, which we will use in the sequel. Let Vi(s1) 
denote player i's net gain from playing ai rather than /3i when j plays aj with 
probability sj: 

VJ(s1) = S1gi -(1-s1)gi. 

For g E Ga n G, let s denote the unique solution to Vi(s) = 0, i.e. the 
probability which j should attach to a1 to make i indifferent between his two 
actions: 

g, 
(2.2) SJ 1I P (.) Si = 

ga + gp~ 

(Note that (S, S2) is the mixed strategy equilibrium of g.) Clearly, i should 
choose a. or /3i according as he considers the actual sj to be larger or smaller 
than 3-j. Hence a small sj implies a large range of beliefs which justify choosing 
ai. This provides a rationale for using risk dominance as an equilibrium 
selection criterion, for (2.1) is equivalent to 

(2.3) S +s2 <1. 

We write Ra (resp. R) for the set of games where a (resp. /) either is the 
unique strict equilibrium or risk-dominates /3 (resp. a): 

Ra = {g E Ga: if g3, g > 0, then S + S2<1}, 

R= {g E G: if ga, ga> 0, then S-+S2> 1}. 

It is convenient to introduce the notation Gi+ for the set of games for which 
the denominator in (2.2) is positive and to extend the definition of 

- 
from 

n n G3 to G+. Note that D7 cRy and that the sets D7, Ry, and G+ are open 
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in R8 (i E {1, 2}, yE {a, f}) and that 

(2.4) RanG nG2+=(gEGanG nG : s 

3. GLOBAL GAMES AND ITERATED DOMINANCE 

We now picture the players in a situation where it is common knowledge that 
some game in G will be played but the players do not know which one. Initially, 
they have common prior beliefs represented by a probability distribution with 
support on some subclass of G. However, before choosing his action, each 
player gets additional (private) information in the form of a fuzzy observation of 
the actual game to be played. The resulting incomplete information game-to 
be called a global game-may thus be described by the following steps: 

1. Nature selects a game from G. 
2. Each player observes g with some noise. 
3. Players choose actions simultaneously. 
4. Payoffs are determined by g and the players' choices. 
Since G may be identified with R 8, a simple way of modeling the above 

situation would be to let the players make observations directly in R 8; each 
player would then observe the payoffs of the actual game plus some error terms. 
Here, however, we will use an alternative formulation where the selected game 
is observed indirectly through some parameter space which is mapped on G. 
Therefore, let & be a parameter space such that to any x in & corresponds a 
game g(x) in G. We assume: 

(Al) & is an open subset of RAm for some m, g: & -* G is continuously 
differentiable and the partial derivatives dgk/dxl (k = 1, ... , 8; 1 = 1, ... , m) are 
bounded on 0. 

The advantage with this parametric formulation is that it allows a more 
flexible modeling of various classes of games. For instance, it makes it possible 
to represent the class of games corresponding to Figure 1 as a one-dimensional 
space. The case where players observe payoffs directly may be modeled by 
letting & c 1R8 and g(x) = x for all x E 0. 

We let the players' prior be described by a random variable X that takes 
values in &. Moreover, Player i's observation is described by a random variable 
Xi- which is defined by 

Xi'=X+e Ei, i= l,2, 

where Ei is a random variable that takes values in Rm and ? > 0 is a scale 
parameter. In what follows, 0, g, X, E1, and E2 will remain fixed and we write 
F6 for the global game parameterized by E. We are particularly interested in the 
case where the observations are almost correct so we will focus on F6 with e 
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close to zero. We make the following assumptions: 

(A2) X admits a density h which is strictly positive, continuously differentiable, 
and bounded on 6. 

(A3) The vector (E1, E2) is independent of X and admits a continuous den- 
sity q'. 

(A4) The support of each Ei is contained in a ball with radius 1 around 0 in lm. 

A strategy for i is a measurable function si that assigns a probability mixture 
on {ai, 13i} to each observation xi of player i in F-. We let 0?T be the set of all 
possible observations for i, Sff denotes the set of strategies for i, and we write 
si(xi) for the probability which si assigns to the action ai at xi. 

Let VJ'(sjIxj) denote the expected net gain for player i from playing ai rather 
than j8i when he observes xi and player j uses strategy sj in F6. If ViJ(sjlxi) > 0 
(resp. Vi/(s,Ixi) < 0) for all sj E Sj, then ai (resp. /3i) is (conditionally) dominant 
at xi. Hence, we may define the following process of iterated elimination of 
strategies which prescribe dominated actions for some observations: 

S =Si=, A ?'0=+, Bf'0=4, 

SE,n -= {S E SE: Si(Xi) 
1 if xE1 A'n and s O(xi) 0 if xE B i- i i SiXJ i i a ix- xi i1 

AEn =l{xi E= E: ViJ(sjlxi) > 0 for all SESjEjn}, 

BT'i~1 Xl{ 
Ixi 

E OE: VJE(sjhxi) < 0 for all s1ESf'}. 

The following properties, which hold for all i and n, are immediate from the 
definitions: 

AE, nBEln -n, XAi n B E n=? S pn+? 

A i,+ D>A E, n Bi ',+ D)B E, n Si C,+ SiE 

Let us define 
00 00 

A--= U A' i, BT= U B E, 

n=O n=O 

We say that a (resp. ,B) is iteratively dominant at x in FE if x eAl n A' (resp. 
x E B1 n B2). The main result of the paper is the following theorem. 

THEOREM: Let y E {a, ,3}. If x lies on a continuous curve C such that C c 
6, g(C) c R'Y, and g(C) n Dy , then y is iteratively dominant at x in Fr if E is 
sufficiently small. 

For the nontrivial case where g(x) has two strict equilibria, the Theorem says 
that iterated dominance in the global game forces each player to select the 
risk-dominant equilibrium of the game corresponding to his observation pro- 
vided that E is sufficiently small. The next section provides the essential steps of 
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the proof of the Theorem, but some technical details will be deferred to the 
Appendix. The role of the assumptions underlying the Theorem will be dis- 
cussed in Section 5. 

4. PROOF OF THE THEOREM 

The Theorem consists of two completely symmetric statements according as y 
equals a or ,3. To economize on notation, we will formulate lemmas and proofs 
only for the former case. We first provide an outline of the main steps of the 
proof. 

4.1. Outline 

The proof consists of three parts: (i) an investigation of the beliefs of the 
players conditional on their observations, (ii) derivation of properties of the sets 
Al, and (iii) the main part which involves an argument by contradiction. 

(i) We first show that the posterior beliefs are approximately symmetric in the 
sense that, if E is small, the likelihood that player 1 assigns to player 2 making 
an observation x2 when his own observation is xl is approximately equal to the 
likelihood that 2 assigns to 1 observing x1 when his information is x2. This 
symmetry holds exactly if the prior is uniform and, for general priors, it holds 
approximately if the observation errors are small since in that case the prior is 
almost constant throughout the region of possible realizations. This property 
implies that the players have almost the same beliefs about the difference of 
their observations, which for the one-dimensional case entails that 

(4.1) FE (X21X1) +F2E(X1IX2) 1 

if E is small. (Fi (xj lxi) = P(XJ- < xj1 X[ = xi) is the probability that i assigns to j 
making an observation below xi when he observes xi.) A corresponding 
property obtains in the multi-dimensional case. 

(ii) In the second step we show that when a is the iterated dominance 
solution of the unperturbed game g (i.e. g E Da), a remains iteratively domi- 
nant when the players make noisy observations that are close to g. It is also 
shown that an observation xi belongs to A` if and only if at xi, playing ai is 
better than playing 3,i whenever j plays ac exactly on A. If we denote the 
latter strategy by a;, then, by continuity, J/7(a lx<) = 0 for a boundary point xl 
of Al. It will be clear that at suqh a boundary point xE, if ? is small, the 
probability aE(xff)2 that player i assigns to j playing aj must be close to the 
probability 3j(x-) that makes i indifferent between his two actions in g(x4). 
Finally we prove a Lemma which will help to show that the boundary points that 
are used in step (iii) must be close to each other. 

2 The reader should note the distinction between aj'(x), the probability which the strategy aj 
assigns to action aj at the observation xj on the one hand, and, on the other, a'(x,), i =#j, which 
denotes the probability which player i will assign to j's choosing aj when i observes x, and j uses 
strategy a. 
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(iii) In the heart of the proof we argue by contradiction: Assume x' lies on a 
curve C with g(C) cR'a and g(C) nqt D , but nevertheless x' 0AIj nqA' for 
? small. The crucial step of the proof consists in the construction of boundary 
points xE and xI of AE and AE, respectively, that are close to each other and 
for which 

(4.2) lim 52(X1) +1(X2) < 1 and 

(4.3) lim a( (xl) + al (x2) >1, 

conditions that cannot be satisfied simultaneously since, by step (ii) above, 
ay(xi) = 3i(xE) if E is small. Now (4.2) will be satisfied since x' and x2 have a 
common limit x* with g(x*) E R't. To fulfil (4.3), the boundary points have to 
be carefully chosen and, in the general case, this requires a rather elaborate 
construction which is given in the Appendix. In the case where e is one-dimen- 
sional, however, the argument is straightforward: Assume C connects x' with a 
point x in Da' with x <x' and let xff be the point closest to x' such that 
(x, xi4) cA . Then a (xif) > Fi(xW Ix) for E small enough so (4.3) follows from 
(4.1). 

4.2. Posterior Beliefs 

We first introduce some notation associated with Fr. Denote by FiE(x, xi lxi) 
the distribution function of (X, Xj) conditional on Xi- =xi and let fif(x, xjlxi) 
be the corresponding density. Similarly, let FiE(xjlxi) and fif(xjlxi) be the 
conditional distribution and density of Xjf. If we write 9p for the joint density of 
(Ei, eEE) (i.e. SD (z) = 8 p(E - 1z)), then, for i, j = 1, 2, i #j, 

Jh(x)fp(x1 -x, x2 -x) dx 
( 4.4) fiE( xjIxi ) = 

ffh(x)>Et(x1 -X, X2- x) dxj dx 

Note that if X is uniformly distributed on & and if B(xi, E), the ball with radius 
8 centered at xi, is completely contained in 0, then h(x) is a constant for all x 
that yield a contribution to any of the integrals in (4.4). Thus h(x) can be 
factored out from the fraction and, since the denominator of the new expression 
equals one, we get 

ff-(xjlxj) = fp (x1 x, X2 -x) dx = d (x1 x2), 

where IPE is the density of eE1 - EE2, the difference between the observation 
errors. Consequently, with a uniform prior, if B(x_, 8) c & for i = 1, 2, then 

fl (X2l1) =f2(xl1 x2) = If E(X1 X2)- 
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Hence 

F1(X2Ix1) = f f(x1 -y) dy 

=1 ?(Z-X2) dz 
z>X1 

= 1 -F2(X1 X2), 

which shows that (4.1) holds exactly in this case. The corresponding property in 
the multi-dimensional case is that, for p E Rm, 

(4.5) P(PX2-<-PX2IX= X1)?+P(pXlPX1 IX2=X2)=1. 

(Geometrically, the terms on the left-hand side denote the probabilities that Xji 
lies in the negative halfspace py < pxj conditional upon observing Xf6 =xi.) To 
see why (4.5) holds note that 

P( X Epx2IX1 =x1) = f /(x1 -y) dy 
PY PX 2 

= P(prEE -pEE2 > PX1 PX2) 

and, similarly, 

(PX1 < PX1 IX2 = X2) = f q?( -X2) dy 
py<pX1 

= P(pE1 -pEE2 < pX1 -PX2). 

Our first lemma shows that, for small E, (4.5) remains approximately valid even 
without a uniform prior. The intuition is obvious: If E is small, the prior is 
almost constant for all realizations that the players consider possible on the 
basis of their observations. 

LEMMA 4.1: Let x1, X2 E &. Then there exists a constant k(x1, x2) such that for 
all p E Rm and all sufficiently small E 

(4.6) | P(PX2 ?px2X =X1) +P(pXj ?px1IX< =x2) - I s k(x1,x2)E. 

PROOF: Fix 8 > 0 such that h(x) > 8 for all x E B(x1, E) U B(x2, E). Since h 
is continuously differentiable, there exists a constant l(xi) such that Ih(x) - 

h(xi) I < 1(xi)E for all x E B(xi, E). Por any xi we have 

h(xi) - 1(xi)E ql(l-2 ,j-xlj h(xi) + 1(xi)E (X X2 
h(x ) + l(xi)E ( -X2) fi(xjIxi) h(x) - l(x)E (x1-x2) 

(Cf. the argument below (4.4).) Hence, if we choose E so that l(xi)E < 8/2 and 
define k(xi) = 41(xi)/8, then 

(4.7) Ifi(XIxi) - f(X1 -X2)1| < k(xi)ef (x1 -X2). 
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Substituting these bounds for ff6(x, lxi) into the expressions for P(pXj < pxj I 
Xf6 = xi) and proceeding as in the case where X is uniform, we obtain (4.6) by 
defining k(x1, x2) = k(x1) + k(x2). Q.E.D. 

4.3. Properties of the Set Ai? 

The first lemma shows the suite intuitive result that, if a is the iterative 
dominance solution of g, then playing ai is conditionally dominant at g when 
observations are only slightly noisy. 

LEMMA 4.2: If, for a compact set S C &, g(S) cDa, then S C nA, for all 
sufficiently small e. 

PROOF: For any x E S, either (i) g(x) E Da so that ga(X)> 0, ga(X)> 0 and 
gf(x) < 0 or (ii) g(x) E D2 so that ga(X)> 0, ga(X)> 0 and gj(x) < 0. Since g 
is continuously differentiable, we may choose E small enough so that, for all 
x E S, these inequalities remain satisfied on B(x, 3?). It will suffice to consider 
case (i). Then, if player 1 makes an observation in B(x, 2?), he knows that a1 is 
a dominant strategy for each possible realization of the game. Consequently, 
B(x, 2?) cA If player 2 observes x, he knows that player l's observation is in 
B(x, 2?) and, hence, that a1 is conditionally dominant for 1. He also knows that 
a2 is the unique best response to a1. Thus, x eA?-'2 and the proof is complete 
since the Ai?'n are nondecreasing in n. Q.E.D. 

The next lemma derives a convenient characterization of Ai when the 
associated game is well inside G+: Then, the points in A-' are exactly those for 
which ai is strictly better given that j chooses aj on A'. 

LEMMA 4.3: Define the strategy aE of player j in Fr by 

(1 if xj= eA, 
(4.8) a?(Xi) 

= j }EX (4.8) a(x1) 
0 oterwise. 

Let x i E Q be such that g(x) E G I for all x E B(x , 8). Then x E1 A' if and only 
if Vi (aj Ixi) > 0. 

PROOF: Slnce Ajf ' for all n, it is obvious that ai E Si- n. If xi eAi, then 
xieA,,nII for some n. Hence ViJ(sjlxi)>0 for all sjESj,n and, therefore, 

Vi-- (a xi) > O. 

Conversely, assume ViJ7(aIx1)> 0 and define a,, n as in (4.8) but with A' 
replaced by Aj, n. For Sj E Sj?n we have 

i (i ) |[SijXi) ( gia(X ) + gi ( x)) -gi (X )]dFi (X S XjlXi ) 

> | f[a n(X )(ga(X) + gf(x)) -gi(x)] dFi(x, xjlxi) 

= Vi (aj i x), 
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where the inequality follows from the assumption that g(x) E Gj' for all 
x eB(xj,E). Hence, xi eAi?' n+1 if and only if ViJ(a' nlXi) >0. Now a n con- 
verges pointwise to a-' so, by Lesbegue's bounded convergence theorem 

VE n(aX)nlx )-* Vi(a- Ixi) as n -oo. 

Therefore, Vi'(an Ixi)> 0 and, hence, xi E A 'n for n large enough which 
implies xi E A'. Q.E.D. 

For a strategy sJ of player j in F-, let sj-l(xi) denote the probability that player 
i assigns to j choosing action aj if his observation is xi: 

(4.9) Si-'(xi) = |sj( xj) dFi'( Xj Ixi). 

The next lemma shows that in the case where ViE(sjlxi) = 0, this probability is 
close to the probability sj(xi) (as defined in (2.2)) that makes player i indifferent 
between his two pure actions in g(xi). (Of course, if ga'(xi) or gf(xi) is 
negative, s-(xi) cannot be interpreted as a probability, but Lemma 4.2 shows 
that such an xi cannot be a zero of Vi' if E is small.) 

LEMMA 4.4: Let g(xi) E G+. There exists a constant k(xi) such that, for all 
s-,E S, if ViE(sjlxi) = 0, then Isjf(xi) - 

- 
(xi)l < k(xi)E. 

PROOF: Let k be an upper bound on the absolute values of the partial 
derivatives of g on e and define k(xi) = mk/(ga(xi) + gP(xi)). Then 

Vi( sIxi ) = ff|[ sj( xj) (ga ( x) + gf(x)) -gi((x)] dFiE(x, xjlxi) 

s f[Sj(Xj)(ga(Xi) + gf(xi)) - gf(xi)]dFiJ(xjtxi) + mkE 

= [[sj(xXj) -Sj(xj)]dFIf(xjlxj) +k(xi)E] [ga(Xi) +gi3(xi)] 

= [sj(xi) -Sj(xi) + k(xi)e] [gi(xi) + gf(xi)]. 

Consequently, if ViE(sjlxi) = 0, then sjE(xi) > -j(xi) - k(xi)e. The reverse in- 
equality is proved in the same way. Q.E.D. 

An important consequence of Lemmas 4.3 and 4.4 is that aE(xi) must be close 
to &j(xi) if xi is a boundary point of A'. Our final lemma shows that if we start 
looking for boundary points within a dominance solvable region of R , then any 
boundary point of AE must be close to a boundary point of A-' and vice versa. 
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LEMMA 4.5: If xi is a boundary point of Al and g(x) E Ra for all x in B(xi, ?), 
then B(xi, 2?) A' 

PROOF: If B(x1, 2E) CAJ, then, by assumption (A4), 

i (a. 
{xi) = 

ffga (x)dFf6(x, xjlxi) > 0 

since ga(x) > 0 for all relevant x. Hence xi eAI by Lemma 4.3. Q.E.D. 

4.4. The Main Step of the Proof 

Since in the general, multi-dimensional case the main argument of the proof 
is obscured by a number of technical details, we defer the concluding step for 
that case to the Appendix. Here we give the argument for the one-dimensional 
case where & c [R. 

We argue by contradiction: Assume x' is contained in an interval C = [x, x]- 
such that g(C) n Da # 0 and g(C) cRa, but that nevertheless x' CA- nA- for 
arbitrarily small E. By Lemma 4.2, then, g (x') > 0 for i = 1,2, and, thus, 
g(x') E G+ n G2 . Without loss of generality, we may assume the following: 

(i) g(C) c G n Gj (if this condition is not satisfied, restrict attention to the 
segment of C around x' that lies inside G1 n G ; since mini gat(x) has a 
positive lower bound on C, this segment necessarily contains points in D a as 
well); 

(ii) g(x) E D; and 
(iii) x < x' < x (as the relevant sets are open, the curve can be slightly 

extended if desired). 
Noting that C is compact and reviewing the constructions of Lemmas 4.1 and 

4.4, we see that there exists a constant k such that 

k(x1>)<k and k(x,,x2)?<k forall xl,x2EC. 

If E is small enough and such that x' 0Aj nArA, then, by Lemma 4.5, both Al 
and A- must have boundary points on C. We let x< denote the first boundary 
points starting from x: 

xi = sup {x E C: 
[,x, 

x) cA-} . 
Lemma 4.3 and the continuity of Vi7 imply that ViJ(alx<) = 0 for i = 1,2. 
Hence, by Lemma 4.4, 

(4.10) a--(x`) <j(xi)+kE for i,j=1,2, i$j. 

On the other hand, for sufficiently small E, X - x > 2E by Lemma 4.2. Hence 

aj ( xi) > P (iXj < Xj IXi = X) 

and therefore, by Lemma 4.1, 

(4.11) a--(xl) + a (x2) I-kE. 
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Combining (4.10) and (4.11) yields 

g2(X--) + 9,(x-) > 1- 3kE. 

Letting E go to zero, we see that for the common (Lemma 4.5) limit x* of x4E 
and x2 

g2(X*) +S1(X*) > 1, 

but this contradicts the fact that g(x*) E Ra n G + n Gj (cf. (2.4)) and com- 
pletes the proof. 

5. ROLE OF ASSUMPTIONS 

The equilibrium selection result presented above is driven by two fundamen- 
tal features: the existence-guaranteed by the condition stated in the Theorem 
-of dominance solvable regions Da and DO within the class of games g(O); 
and the continuity-ensured by assumptions (Al), (A2) and (A3)-of the 
function g as well as the densities of the prior and the observation errors. In 
contrast, the assumption (A4) of bounded error supports is made only to 
simplify our argument but is not really essential. As long as payoffs and the 
error density are bounded, (A4) can be dispensed with. The following discussion 
will therefore focus on the condition of the Theorem and the continuity 
assumptions. 

It has already been made clear in the introduction that our result depends 
crucially on the existence, within the class of games, of regions where each of 
the two action pairs y, y e {ca,/3}, can be established as strict dominance 
solutions. These regions are the indispensable starting points for the iterated 
dominance argument in the global game. The Theorem adds to the nonempti- 
ness of these regions the requirement that from the game g(x) in Ry there exist 
a continuous link to another game where y is the strict dominance solution 
through a region where the risk dominance relationship is never reversed. The 
study of simple examples, however, suggests that this second property is likely to 
be implied by the existence of strict dominance regions. This is indeed the case 
for the example in the introduction provided that the parameter x is drawn 
from an interval. The implication also holds for the "natural" parameterization 
g(x) = x when each payoff entry gk (k = 1,... , 8) corresponds to an indepen- 
dent random variable Xk which is defined on a real interval. 

The proof of the last assertion may be sketched as follows: Suppose x' E 

&, g(x') E Ra and, for some x" E &, g(x") E Da so that the nonemptiness 
condition is met. Without loss of generality we may assume that gf(x") < 0. To 
simplify, also assume that g (x") <gg(x') (other cases can be handled in a 
similar way). Let x~ be the point which agrees with x' for the six payoffs that 
determine ga, ga, and g3 and agrees with x" for the two payoffs that determine 
g. Moreover let C be the straight line between x and x'. Then, by construc- 
tion, x E 0, g(xT) E Da, C c &, and g(C) c R' so the condition of the Theorem 
is satisfied. 
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Another essential prerequisite for our result is that, given a strategy for the 
opponent, a player's expected payoff (and thus his expected net gain Vi'( l * )) 
from using a certain action is continuous in his observation. This ensures that a 
strict indifference condition (Vi<( lxi) = 0) has to be satisfied at any point xi 
where the player optimally switches from one action to the other, a condition 
which is exploited in the characterization of the boundary points of the iterated 
dominance sets A-. The continuity of the expected payoffs results from the 
continuity of the prior density (A2) and the joint error density (A3). Note, 
however, that' the latter assumption can be weakened: A careful inspection of 
the proofs reveals that the Theorem holds as long as the difference between the 
error terms, E1 - E2, allows a continuous density. A potentially interesting 
variant which meets this requirement is when one of the players observes exactly 
the true value while the other player's observation contains an error term. 

To see the importance of continuity, it is instructive to consider a variant 
where, in the global game F%, each player i observes the true value of X with 
probability 1 - 8, i.e. Xi[ is given by 

Xi = X + Yi, 

where Yi' is a (bounded) random variable satisfying Prob {Y7 = 0} = 1 - 8. Now 
consider x E e such that g(x) has both a and ,B as strict equilibria. We claim 
that, for sufficiently small 8, playing any equilibrium of g(x) is compatible with 
(Bayesian Nash) equilibrium in a global game F' satisfying (Al) and (A2). To 
see why, it suffices to note that 

lim Prob {X = x and Xj = x lXi = x} = 1, 

i.e. as E goes to zero, each player becomes certain that both he and his 
opponent have observed the true value. Another variant which yields the same 
result is when the prior on 0, instead of having an everywhere positive density, 
has support on a finite number of points. In this set-up (keeping (A3) and (A4)), 
for E smaller than half the minimum distance between any of the points, the 
true value of X becomes common knowledge to the players. 

Somewhat more surprisingly, similar results are obtained even if there is a 
real link between different games as long as the class of games is discrete. These 
results are derived in Monderer and Samet (1989) who consider the following 
set-up: Let (Q, I, ,u ) be a probability space, for o E Q, let g(G) be a game with 
a finite set of players and assume, that {g(G): o eQ 1} is finite. A game F of 
incomplete information is now defined in the natural way. Monderer and Samet 
address the question under what conditions F has an 8-equilibrium which is 
close to an arbitrary selection of equilibria from the underlying class of games. 
Formally, if for each o E 1 s(G) is an equilibrium of g(G), does there exist an 
8-equilibrium of F that is close to s? The answer is shown to be affirmative if, 
on a large (close to measure one) subset of 1, each player knows with high 
probability which game will be played. This result thus suggests that the 
nonfinite state space is essential for our result. 
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6. EQUILIBRIUM SELECTION AND THE NASH PROGRAM 

In this section we discuss the role of risk dominance and payoff dominance in 
Harsanyi and Selten's equilibrium selection theory for the case of 2 x 2 games 
and compare their argument with the justification for risk dominance which can 
be derived from our own model. We also summarize the important links 
between our approach and Nash's work on bargaining and noncooperative 
games. 

6.1. Risk Dominance vs. Payoff Dominance 

Harsanyi and Selten offer two complementary justifications of the risk domi- 
nance criterion for 2 x 2 games with two strict equilibria. The one is an 
axiomatic derivation while the other, more heuristic justification relies on a 
simplified version of the tracing procedure which the authors use in order to 
define the risk dominance relation for general games. 

The axiomatic derivation is based on three axioms: 
(i) invariance with respect to isomorphisms, 
(ii) best-reply invariance, and 
(iii) payoff monotonicity. 
The first axiom rules out any dependence on the labeling of players and 

actions or on positive linear utility transformations. In particular it implies that, 
in a symmetric game in which both a and f3 are strict equilibria, the solution 
has to be the mixed equilibrium. Axiom (ii) guarantees that the risk dominance 
relation in a game where a and f3 are strict equilibria only depends on the four 
deviation losses g a, ga, go, and go. In the same setting the last axiom says 
essentially that if, starting from a game where f3 does not risk-dominate a, one 
or both payoffs associated with the outcome a are increased while all other 
payoffs remain unchanged, then a risk-dominates f3 in the new game. Harsanyi 
and Selten show that the only definition of risk dominance that satisfies these 
axioms is the one given above, i.e. the equilibrium with the largest Nash product 
is risk-dominant. 

In the heuristic justification, selection of the risk-dominant equilibrium results 
from postulating an initial state of uncertainty where the players have uniformly 
distributed second-order beliefs. To be more specific, let j's initial beliefs about 
i's choice of action be represented by the mixture zai +(1 - z)f3,, z E [0, 1]. 
Player i does not know j's beliefs so, applying the principle of insufficient 
reason, he considers all values of z to be equally likely. Player i then reasons 
that, whatever the value of z, j will use a best response against his beliefs, i.e. j 
will play aj or fj according as z > si or z < si, the critical probability si being 
defined as in (2.2). Hence, player i expects j to play (1 - S-i)aj + s,fij and will 
choose a best response against this mixed action, i.e. he will play ai if 1 - si > s 

and fi if 1 - si < -j. Comparing with (2.3) one sees that, if both players follow 
this line of reasoning, they will end up coordinating on the risk-dominant 
equilibrium. 
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C 3,3 3,0 

/3 0,3 4,4 

FIGURE 2.-Game g(3). 

It is certainly remarkable that two such different approaches lead to the same 
selection criterion. This fact suggests that the risk dominance relation is a 
strategically highly significant property in 2 x 2 games. On the other hand, it has 
to be admitted that none of the justifications is built on an altogether solid basis. 
For instance, without going into details, it is not made clear why an equilibrium 
selection rule should satisfy the axiom of best-reply invariance. It is also difficult 
to find a compelling reason why the players' initial beliefs have to be uniformly 
distributed as in the heuristic approach. In this connection, it should be noted 
that-in contrast to our model where the exact shape of the prior is unimpor- 
tant-the outcome of the heuristic approach depends crucially on the prior. For 
instance, in the game shown in Figure 2 (which is the game g(x) in Figure 1 
with x = 3), the heuristic argument selects the Pareto-dominant equilibrium f3 if 
the prior has a sufficient bias in favor of this equilibrium. (Assume, e.g., that 
player i's beliefs about j's beliefs have distribution function F(z) =-z1.) 

The shakiness of the justifications appears perhaps most clearly from the fact 
that Harsanyi and Selten themselves in the end choose not to use risk domi- 
nance as a general criterion. Instead they decide that payoff dominance should 
have precedence in case of conflict between the two criteria. Hence, in the game 
g(3), the Harsanyi/Selten theory selects the payoff-dominant equilibrium fi 

although a is risk-dominant. Their motivation for giving precedence to payoff 
dominance is that "( ...) risk dominance is important only in those situations 
where the players would be initially uncertain whether the other players would 
choose one equilibrium or the other. Yet, if one equilibrium would give every 
player higher payoffs than the other would (...) every player can be quite 
certain that the other players will opt for this equilibrium which will make risk 
dominance considerations irrelevant" (Harsanyi and Selten (1988, p. 358)). In 
another passage of the book they admit that the players may be justified in 
relying only on risk dominance in some situations, for instance after a break- 
down of preplay communication. Nevertheless, they conclude that "a theory 
that considers both payoff and risk,dominance is more in agreement with the 
usual image of what constitutes rational behavior" (pp. 89-90). 

These arguments for giving precedence to payoff dominance are hardly more 
compelling than the previous justifications of risk dominance. Rather, Harsanyi 
and Selten's hesitation on this point seems to be a sign that their theory is 
located on a level- of abstraction where the problem of equilibrium selection 
does not always have a determinate solution. Without knowing more details 
about the context of the game, including the possibilities of preplay communica- 
tion, it is difficult to predict whether the players will conform to risk dominance, 
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payoff dominance, or some other criterion. In this respect we think that the 
global game approach presented in this paper constitutes a certain advance. By 
perturbing the players' payoff information, we obtain an incomplete information 
game where play in accordance with risk dominance results from a standard 
noncooperative equilibrium concept. Thus, we embed any given 2 x 2 game in a 
context which is sufficiently rich to generate a determinate solution to the 
equilibrium selection problem. 

One advantage of our approach is that it supplies a more precise intuition for 
risk dominance. The Harsanyi/Selten theory presents risk dominance as a 
measure of the relative stability of equilibria in the presence of strategic 
uncertainty, but-granted the ad hoc character of the heuristic derivation-it 
fails to provide a convincing argument for the relevance of such uncertainty. 
(Indeed, in the above quotation, the precedence given to the payoff dominance 
criterion is justified by the absence of uncertainty in games where this criterion 
is applicable.) In our model uncertainty about your opponent's choice of action 
appears when your observation is close to the point where he switches from one 
action to the other. Hence, the optimal choice of a switching point requires the 
players to consider the relative riskiness of the two alternative equilibria. In 
view of this, it is quite intuitive that the equilibria must be approximately 
equivalent in terms of risk dominance at the switching points. 

6.2. Nash's Bargaining Theory and the Nash Program 

The preceding analysis of equilibrium selection in 2 x 2 games has several 
notable connections with Nash's (1950, 1951, 1953) seminal work on bargaining 
and noncooperative games. First, there is an obvious link between risk domi- 
nance and Nash's bargaining solution since both choose the point corresponding 
to the largest Nash product (in the bargaining set-up this means the product of 
utility differences between the agreement and the disagreement point). Actu- 
ally, in their search for a satisfactory definition of risk dominance, Harsanyi and 
Selten were guided by the desire "to reproduce the results of Nash's bargaining 
theory with fixed threats" (Harsanyi and Selten (1988, p. 215)). 

Secondly, Nash justifies his bargaining solution by means of an axiomatic 
derivation where a leading idea consists of imposing conditions on how the 
solution should be allowed to vary on a whole class of games. Harsanyi and 
Selten's axiomatic derivation relies on the same type of conditions. Actually all 
their axioms explicitly force solutiohs of different games to be linked to each 
other. Our approach also exploits conditions of this kind, but, rather than 
simply postulating them, we derive them from more basic conditions of imper- 
fect information. 

Moreover, Nash complements his axiomatic derivation with an explicit nonco- 
operative approach where he tries to select the axiomatic solution by adding 
noise to the bargaining game. This approach was not completely satisfactory for 
Nash did not succeed in excluding the possibility of multiple solutions, but his 
basic intuition has been confirmed in recent work by Binmore (1987) and, in a 
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more detailed model, by Carlsson (1991). These authors add noise to the 
parties' bids in Nash's noncooperative game and show the existence of a unique 
solution as the noise vanishes. The formal structure of these bargaining games is 
very similar to that of global games. In particular, the problem of choosing 
optimal bids in a noisy bargaining game involves the same kind of risk consider- 
ations as the problem of choosing a point where to switch from one action to 
the other in a global game. 

Nash's strategic analysis of bargaining inaugurates a tradition which has 
become known as the Nash program. The common denominator of this tradi- 
tion is a dissatisfaction with the ad hoc character of many cooperative or 
axiomatic solution concepts and the wish to derive predictions within strictly 
noncooperative models. In our view, the approach of this paper could be viewed 
as an attempt to extend the Nash program to a more general field of equilib- 
rium selection. 

7. COMMON KNOWLEDGE AND PAYOFF UNCERTAINTY 

In this section we compare our approach with two other models of payoff 
uncertainty, namely Rubinstein's electronic mail game and Harsanyi's games 
with randomly disturbed payoffs. In the final subsection we shortly discuss the 
role of common knowledge for the justification of the iterated dominance 
solution concept that we have been using. 

7.1. Common Knowledge and Rubinstein's Electronic Mail Game 

As we have already pointed out, our result is driven by the remote influence 
that the dominance solvable regions Da and DI exert on the region of games, 
Gqan G), having both a and f3 as strict equilibria. This influence is due to a 
certain "lack of common knowledge" in the global game. Once this lack of 
common knowledge is taken into account, it is no longer paradoxical that, in the 
game g(3) of Figure 2, the players are forced to select a although, when 8 is 
small, they know that a uniformly better equilibrium f3 is available: If x is 
drawn from an interval [x, x] with x > 4, the fact that f3 is an equilibrium is not 
common knowledge. 

To formalize this assertion, let Q = {o: o., = (x, x1, x2)} be the state space and 
let E be an event. Denote by KE the event that both players know E and write 
K+l = K(KnE). Then, the event E is common knowledge at all states o 
belonging to n nKnE. Now, let E denote the event that f3 is an equilibrium, i.e. 
E = { e Q: x < 4}. Player i knows that E obtains if and only if xf < 4 - , i.e. 
KE = { e 1: x < 4 - 8, i = 1, 2}; player i knows that player j knows that E 
obtains if and only if x? < 4 - 3e (K2E = {o e 1: xf < 4 - 3e, i = 1, 2}). Contin- 
uing inductively one sees that the event E cannot be common knowledge for 
any 8> 0. 

A similar lack of common knowledge occurs in Rubinstein's (1989) electronic 
mail game, where it also gives rise to a kind of action from a distance. To 
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game g game g' 

FIGURE 3 

describe Rubinstein's model, refer to Figure 3 where we let g = g(3) and 
g'= g(5), g(x) being defined as in Figure 1. Then g' is dominance solvable with 
solution a while g has both a and f3 as strict equilibria. Note that a is 
risk-dominant but f3 is Pareto-dominant in g. Rubinstein considers the follow- 
ing situation: First, one of the games, g or g', is selected, each with probability 
1/2. Player 1 is always informed about the game selected. Player 2 is not 
informed if the game is g'. If the game is g, player 1 automatically sends player 
2 a message (saying that the game is g) which player 2, upon receiving it, 
automatically acknowledges, an acknowledgement which, when received by 1 is 
again automatically acknowledged, etc. The communication technology, how- 
ever, is imperfect: Each message gets lost with a small probability 8 and, as soon 
as a message is lost, the communication process stops. As a result it never 
becomes common knowledge which game has been selected. 

Rubinstein shows that even if many messages have been exchanged and, 
hence, the players are sure that the game is g, each knows that the other knows 
this, etc., rational players will not choose the payoff-dominant equilibrium f3. 
The argument is simple and uses induction on the number of messages received. 
Obviously, conditional on the fact that he has not received any message, player 
2 will choose a since he will consider it very likely that the game is g'. 
Conditional on the fact that he has received k but not k + 1 messages, player i 
considers it about equally likely that it was his acknowledgement that got lost as 
that j's acknowledgement of the k th message got lost. By the induction 
hypothesis, i knows that j will play aC in the first case and thus concludes that 
the probability of j choosing fj is at most around 1/2. Therefore, the expected 
payoff associated with Pi is at most around 2 so it is conditionally dominant for 
i to choose ai. 

The reader notices that the forces at work in Rubinstein's model closely 
parallel those in our global game model: The result is driven by the fact that a 
is dominant in g' and risk-dominant in g. Rubinstein considers it paradoxical 
that the Pareto-dominant equilibrium is excluded since it implies "that the 
game-theoretic 'prediction' for the 'almost common knowledge' situation is very 
different from the situation with common knowledge" (Rubinstein (1989, 
p. 385)). We are not convinced. We do not know what the game-theoretic 
"prediction" is for the common knowledge situation. In our view, it is not 
obvious that this "prediction" should be identified with the Pareto-dominant 
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equilibrium. The prediction for a game with multiple equilibria-in particular if 
there is a conflict between Pareto dominance and risk dominance-cannot 
be determined independently of the context in which the game is played. 
Rubinstein's electronic mail game as well as global games are examples of 
contexts where the informational conditions force the players to choose the 
risk-dominant equilibrium. 

7.2. Harsanyi's Randomly Disturbed Games 

Harsanyi (1973) analyzes games where each player is slightly uncertain about 
the payoffs of his opponents. His major finding is that, in this perturbation, 
there is no need for the players to actively randomize: A mixed strategy 
equilibrium of a normal form game can be approximated by pure strategy 
equilibria of slightly perturbed games. For the present context, however, the 
most significant result is that, in generic normal form games, all Nash equilibria 
are robust against Harsanyi's perturbation. Hence, it is interesting to compare 
Harsanyi's model and our own approach for 2 x 2 games in order to see why 
their results are so different. 

Let G be the set of 2 x 2 games in which each player i has the action set 
Si = {a3i,,f3} and let S = Sl x S2. Any g E G can be written as g = (g1, g2) where 
gi R 4describes i's payoffs in g. For s E S and i = 1, 2, let Ei(s) be a random 
variable which takes values in R and has a continuous density; assume E1 and 
E2 are independent. For g E G and E > 0, Harsanyi considers the incomplete 
information game Fe(g) described by the following rules: 

1. A realization (e1, e2) of (E1, E2) is drawn. 
2. Player i is informed about ei (and about nothing else). 
3. The players choose actions s = (s, S2) simultaneously. 
4. Each player i receives payoff gi(s) + eei(s). 
Comparing Harsanyi's approximating sequence {FE(g)}8 Io with the sequence 

of global games {Fe}e 0 as defined in Section 3, one notes three important 
differences: 

(i) Harsanyi lets the prior uncertainty vanish while we keep the prior constant 
and let the residual uncertainty, which remains after the players have made 
their observations, vanish for each observation. 

(ii) In Harsanyi's set-up different players' payoffs are independently dis- 
tributed. Our model allows both for independence and correlation in this 
respect. 

(iii) In Harsanyi's model a player learns his own payoffs exactly but does not 
receive any information about the opponent's payoffs. Since payoffs are inde- 
pendent, the player's observation does not tell him anything about the oppo- 
nent's payoffs. In our model, players make (imperfect) observations of the entire 
game, i.e. they learn something about both players' payoffs. Since observations 
are correlated with the actual game, observations of different players are 
obviously correlated as well. 
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The third point in particular is of major importance. A necessary prerequisite 
for the action from a distance which occurs in our model is that a player's 
beliefs about what the opponent is going to do are correlated with the player's 
observation: If player i observes a game close to Da, then he will think that his 
opponent is likely to play aj (if only because it is likely that j will have observed 
a game actually belonging to Da) and, hence, i will play ai. Such a phenomenon 
cannot occur in Harsanyi's model where player i's beliefs about j's behavior are 
independent of his observation. Actually, in Harsanyi's model, the players' 
first-order beliefs are common knowledge. Hence, in contrast with what hap- 
pens in our model, there is no increase in the range of uncertainty as you ascend 
to higher levels in the hierarchy of beliefs and, as E goes to zero, it becomes 
common knowledge that the actual game is very close to g (provided that the 
error terms El and E2 are bounded.) 

Hence, there are considerable differences between the two models and it 
should not be surprising that the results are completely different as well. For a 
2 x 2 game g with three equilibria Harsanyi shows that all three equilibria can 
be approximated by the beliefs associated with equilibria of the game FE(g); i.e. 
for every equilibrium s of g, there exists an equilibrium s' of Fp(g) for which 
the associated beliefs (defined as in (4.9) but independent of xi) converge to s 
as e tends to zero. On the other hand, in our model, only the risk-dominant 
equilibrium can be approximated; i.e. if s is the risk-dominant equilibrium of g 
and s- is an equilibrium of F', then s5(g) converges to s. Note the difference 
between the two notions of convergence: We investigate pointwise convergence 
of equilibrium strategies while Harsanyi studies convergence of equilibrium 
beliefs. In Appendix B, we construct a hybrid model which contains our own 
model and Harsanyi's as extreme special cases. The mathematical analysis 
clearly brings out the differences between the various models. 

In view of the important differences between the results of the two models 
one would, of course, like to know which one provides the most relevant 
description of payoff uncertainty for economic and other applications. The 
answer to this question requires more knowledge about how agents acquire 
information than we possess today, but the following remarks may nevertheless 
be of some interest. In Harsanyi's model, the players' first-order posterior 
beliefs are assumed to be common knowledge, i.e. although each player is 
uncertain about his opponent's exact payoffs, the exact distribution from which 
they are drawn are common knowledge. This kind of assumption has now 
become standard in game-theoretic applications, but it is open to a rather 
obvious objection: Granted that it is' unrealistic to assume that the exact payoffs 
are common knowledge, why would this assumption be more plausible when 
applied to first-order beliefs? Our model escapes this difficulty since there is 
residual uncertainty at any level of posterior beliefs; in other words there is no 
n such that the players' nth-order beliefs are common knowledge. On the other 
hand, as long as we want to interpret our result within the traditional game- 
theoretic framework, we still need the common knowledge assumption at the 
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level of the rules of the global game. In the following subsection we briefly 
discuss alternative interpretations. 

7.3. Iterated Dominance and Common Knowledge 

Our Theorem is based on a relatively weak equilibrium concept, viz. iterated 
elimination of dominated strategies. An attractive feature of iterated dominance 
-in contrast with stronger concepts such as Nash equilibrium or Bayesian Nash 
equilibrium-is that we know a general condition which ensures its implemen- 
tation: In the context of our model, if the rules of the global game-as given by 
E and the functions g, h, and p-and the players' rationality are common 
knowledge, then the players will choose serially undominated strategies and, 
thus, act in conformity with our Theorem. 

This justification of our solution concept, however, may not be totally convinc- 
ing since a major motivation for our approach has been the wish to relax the 
common knowledge assumption. Hence, it would be desirable to find alternative 
justifications which-instead of simply moving this assumption from one level of 
analysis to another-dispense with it altogether. The kind of stories that 
naturally come to one's mind are those where the strategy choices, instead of 
being determined by strictly rational considerations, result from some learning 
or evolutionary process. Intuitively, granted that such a process would favor the 
use of strategies that are relatively successful in terms of average payoffs, a 
stable state seems to require that only serially undominated strategies are used. 
Of course, this intuition remains to be formalized and proved, but we feel that 
recent progress with learning models are very promising in this respect. In 
particular, Milgrom and Roberts (1989) show that, for an important class of 
games and a great variety of learning processes, the sequence of strategy choices 
will eventually be confined to the set of strategies which survive iterated 
elimination of strictly dominated strategies. 

8. CONCLUSION 

Two central aims in recent game-theoretic research have been to arrive at 
unique solutions3 on the one hand, and to incorporate more realistic informa- 
tional assumptions on the other. There is often thought to exist a conflict and, 
thus, a necessary trade-off betw'een these two goals. The concept of global 
games that has been presented here indicates that this need not be the case. On 

3The importance of uniqueness is stressed by Robert Aumann who writes in the foreword to 
Harsanyi and Selten (1988): "Nash equilibrium makes sense only if each player knows which 
strategies the others are playing; if the equilibrium recommended by the theory is not unique, the 
players will not have this knowledge. Thus it is essential that for each game, the theory selects one 
unique equilibrium from the set of all Nash equilibria." 
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the contrary, the use of an informational set-up implying a considerable weaken- 
ing of the common knowledge assumption has been shown to generate a model 
with interesting equilibrium selection properties. 

The paper's main message is that something can be gained by moving from 
the conventional local analysis of individual games to a global analysis of classes 
of games: an equilibrium of a given game need not be consistent with an 
equilibrium rule for the entire class of games. The global game approach 
provides a natural way to force players to link games together and analyze them 
simultaneously; Unfortunately, the approach turned out not to be easily tractable 
mathematically and we have been unable to pursue its implications, in a general 
set-up, beyond the restricted class 2 x 2 games. Extensions to other classes of 
games are therefore urgently called for. In this connection two distinct ques- 
tions become relevant. The first concerns the classes of games for which the 
global game is dominance solvable in the limit, while the second concerns the 
nature of the solution. To conclude, we discuss some results in Carlsson (1989) 
and Carlsson and van Damme (1991) which concern other classes of games but 
are based on somewhat more restrictive assumptions than the ones used above. 

Carlsson (1989) analyzes m x m unanimity games defined on a one-dimen- 
sional parameter space and shows, roughly, that an equilibrium which risk- 
dominates all other equilibria will be selected by the global game approach. 
Unfortunately, equilibrium selection rules based on Nash products of deviation 
losses become intransitive-and, thus, incapable of selecting a solution-in 
general two-person games (see Harsanyi and Selten (1988, p. 112 and pp. 
216-217)). Hence, even for this restricted class of games, there is some reason 
to be pessimistic about the chances of always generating uniqueness by the 
present approach. 

In Carlsson and van Damme (1993) we consider a class of n-person binary 
choice games. Each player has the choice between a safe strategy that yields a 
fixed payoff x and a risky strategy the payoff of which depends on the total 
number of players that choose the same strategy. If the number of players 
choosing the risky strategy is small, it yields a low payoff, but if many choose it, 
it yields a payoff that is higher than x. Hence, there is again a conflict between 
risk dominance and payoff dominance. We analyze the global game in which the 
value of x is observed with some noise and show that this game is approxi- 
mately dominance solvable. It turns out that the derived selection rule does not 
coincide with selection based on a naive comparison of Nash products and also 
differs from the selection rule proposed by Harsanyi and Selten, which shows 
that global games need not justify the risk dominance principle outside the class 
of 2 x 2 games. Quite interestingly, Kim (1992) has shown that the outcome 
selected by the global game approach is also obtained in an entirely different 
dynamic context: In his model the game is played by randomly and anonymously 
matched players who are drawn from large populations, have perfect foresight 
about the evolution of play, but face costs in adjusting their actions. Kim shows 
that, when the friction vanishes (i.e. the players become very patient or the 
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adjustment cost becomes negligible), the play settles down at the equilibrium 
selected by the global game perturbation. 
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APPENDIX A 

THE FINAL STEP OF THE PROOF IN THE MULTI-DIMENSIONAL CASE 

We argue by contradiction: Assume x' lies on a curve C in e with g(C) n Da ' + and 
g(C) sR', but that arbitrarily small E can be found such that x' -A, n A'. By the same arguments 
as in Section 4.4, we may assume that C is compact, g(C) c GI n G I and g(x) E Da where x 
denotes one of the end points of the curve C. Since &, Da, R', Gj and G2j are open, we can find 
77 > 0 such that 

xE& and g(x)ERaqnGjnG' forallxwithd(x,C)<4-r, 

g(x)E Da forall xE B(x,?J). 

Let K be the compact set of all points in & that are at a distance of at most 4?) of C, i.e., 
K = {x E 0: d(x, C) 6 4'q}. In the remainder of the proof only points in K will play a role. Choose k 
so that, for the constants of Lemmas 4.1 and 4.4, k(x1) 6 k and k(x1, x2) 6 k for all xI, X2 E K. 

Now assume E < ?/2 is such that x'-Al nA' . Also assume E is small enough so that 
B(x,Q) cAl n A' by Lemma 4.2. To construct a point on the boundary of Al n A', let us move 
along the curve C from x in the direction of x' until we first reach a point, say y, for which the 
closed ball B(y, ?J) is no longer contained in Al n A'. Then y is strictly in between x and x' and 
there exists a point, say x1, on the boundary of B(y, 'q) such that x1 -Al n A'. Without loss of 
generality, we may assume x1 OA' so that x1 is a boundary point of A'. Thus, VJ/(aIlx') = 0 by 
Lemma 4.3 and the continuity of VJ/(aI )I By Lemma 4.5 and since e < 71, B(x, 2e) must contain 
boundary points of A'2. 

To construct a particular boundary point of A' in B(x',2e), let p =x' -y and walk along the 
ray from y passing through x1 until you reach the first point, say z, such that the halfspace 
{x: px 6pz} intersected with B(x', 2e) is not completely contained in A'. (See Figure 4 for an 
illustration.) Let x2 be a point on the hyperplane {x: px =pz} within B(x', 2E) such that x2 A' 
Then, obviously, x2 is a boundary point of A' and, thus, V2(ale Ix) = 0. Now note that 

a2(xI) >P(PX2E 6pX2j1X =XI 

and 

alE(xE) > P(X-' E- B(y, -71)jX2 .XE). 

In order to apply Lemma 4.1 and to derive a contradiction, we will show that the probability in the 
right-hand side of the latter inequality is approximately equal to P(pXE <pxf jX2E = x2). Note that 
by construction 

B(y, ) C {x: px 6 px E} 

and let D be the set difference of these sets. We will show that 

P(XfeE DIX2E=x2)- O as E- O. 

Let D' be the set of all points x in D with d(x, xf) < 4e (see Figure 5). Since d(x1, x2) < 2e for all 
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FIGURE 4 

FIGURE 5d 

FIGURE 5.-The shaded area is D'. 
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x1 with f26(xl x') 
> 0 and since d(x', x2) < 2?, it suffices to show that 

(A.1) P(Xf E D'IX2' =x) -0 as ? 0. 

Recalling Lemma 4.1 we have 

P(X' E D'IX2 =X2) (1 + kv)f e(xl-x) dxl. 

By assumption (A3) the density i/ is bounded, say by 1, so f is bounded by ?-ml. Thus 

JDE(Xl X2) dxI<S ?1IA(D ) 

where A denotes Lesbegue measure. To prove (A.1), therefore, it suffices to show that A(D') is of 
order Em + Making a change of variables so that y = (0, . . ., 0) and x = (0, . . .0, ?7) we can write 
D' as 

D' /t E Hm f S 1 L#2 > 2, E (i2 + ((m-. 6 6?) 
E= t7)2 22< 16 \ 

Obviously, I | < 4? for = 1. m - 1 so by combining the last two inequalities in the definition of 
D' we obtain that (m > ?j - 8E2/1. Consequently 

D' c ERm j < 64? fori=1 . -1 and --8E2/sq < }) 

so that 

A(D ) 6 (4?)m 8? ,21 

and, indeed, A(D') is of the order Em?1 
The steps of the proof performed so far allow us to conclude that 

(A.2) lim inf I a -( x -) + al (x2E ) ] > lim inf [ P ( pX2' < px' XlX = x1 ) 
?-0 ?-0 

+P(pXf 6Px1 IX2 =X2)] = 1, 

where the last inequality follows from Lemma 4.1. On the other hand, by Lemma 4.4, 

a-(xE) 
)- 

?(xi) 
O3 as ? 0 

so that, by (A.2), for the common limit x* of x1 and x2 we must have 

g2(x*) +s1(x* ) > 1 

since i/ is continuous on Gj+ n G2 . This conclusion, however, is inconsistent with the fact that 
K c R'. Thus, we have derived a contradiction and the proof is complete. 

APPENDIX B 

COMPARISON WITH HARSANYI S MODEL 

Here, we will analyze a hybrid model of payoff uncertainty which contains both Harsanyi's and 
our own model as special cases. To keep the computations simple, we restrict ourselves to a 
one-dimensional and symmetric set-up. 

For x E R, let g(x) be as in Figure 1. Let Eo, E1, and E2 be independent random variables, each 
normally distributed with mean 0 and variance 1. Let x* E (0, 4) and for 8, a > 0, define the random 
variable Xl = Xi(x*, 8, E) by means of 

(B.1) Xi = x* + 8Eo + EEi, i = 1, 2. 

Moreover, define the incomplete information game G(x*, 8, a) by the following rules: 
1. A realization (x1, x2) of (X1, X2) is drawn. 
2. Player i is informed about xi (and about nothing else). 
3. The players choose actions s = (s1, s2) simultaneously. 
4. Player i receives payoff g,(xi, s) = sixi + 4(1 - sXl - sj). 
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This model is a hybrid of ours and Harsanyi's: each player knows his own payoffs, but knowing 
the own payoffs gives information about the payoffs of the opponent. The case where 8 = 0 
corresponds to Harsanyi's model, as players' payoffs are independent in this case. The case with 
fixed 8 > 0 and 8 tending to zero corresponds more or less to our model. A difference is that now a 
player always knows his own payoffs exactly, which is not true in the model described in Section 3. 
However, it is easily checked that substituting the above condition 4 for the corresponding condition 
in the definition of a global game in Section 3 does not alter our main result. We will investigate the 
Bayesian equilibria of G(x*, 8, ?) and show that, in the first case, one indeed obtains results as in 
Harsanyi (1973), whereas, in the second case, one replicates the equilibrium selection result of this 
paper. 

The game G(x*, 8,8) is symmetric (if player i receives the information "Xi = x" he is in exactly 
the same situation as player j receiving the information "Xi = x") so it is natural to look for 
symmetric equilibria. Actually, one can show that restricting attention to such equilibria, as we will 
do here, implies no loss of generality. Noting that player i will play a1 if xi > 4 and 8i if xi < 0, we 
will look for simple equilibria of the form 

/0 if xi<x, 
s'(x1) \, 1 if xi> x, 

where si(xi) is the probability that i chooses a, if his observation is x. The condition that player i 
is indifferent if xi = x may be written as 

(B.2) 4P(Xj <xlXi =x) =x. 

Now, conditional on Xi taking the value x, Xj is normally distributed with mean ,u and standard 
deviation o, where 

82X + ?2X* 

(B.3) y 82+82 and 

r 28282+8411/2 (B.4) [ = 2 + ?2 

Hence, (B.2) is equivalent to 

x - /t x 

O' 4 

with P being the standard normal distribution function. The last equation may be written 

(B.5) ?(77(x -x*)) =x/4 

where 

(B.6) n = [82/(262 + 82)(852 + 82)]./2 

Note that the extreme case corresponding to Harsanyi's model (8 = 0, 8 -> 0) can be approximated 
by choosing a sequence (8, 8) -- 0 where 8 <? and, thus, 82/(82 + 82) -O 0 and 7 mc. The global 
game model corresponds to the case where 8 -? 0 and E << a so that 82/(82 + 82) 1 and ij -- 0. 
Obviously, equation (B.5) has at least one solution. Furthermore, by drawing a couple of graphs the 
reader may easily convince himself that there exists 71(x*) > 0 such that equation (B.5) has three 
solutions if -j > -q(x*) and a unique solution if qj <71(x*). For iq > 71(x*), let x1(77) <X2(71) <X3(71) 
be the solutions. Then 

(B.7) xl(71) 0 as 77 oo, 

(B.8) x3(71) 4 as 77 -oo and 

(B.9) x2(n7)q x* with ?P(71(X2(71) -x*)) -x*/4 as 77- m0. 

If the equilibrium of G(x*, 8,?) corresponding to the switching point x'(n7) is played, then, in 
the limit as r7 - oo, players will coordinate on the equilibrium a: Since Xi N(x*,(82 + 8 2)1/2) and 
x'(77) <<x, each player i chooses ai with a probability that tends to 1 as t7 m. Similarly, the 
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switching point x3(n) induces beliefs corresponding to the equilibrium f as n -m oc. If players adopt 
the switching point x2(71), then each player i will choose f,l with a probability 

0((X2(t) _X*)(52 + 2)1/2) = [7(X2(r) -x*)((252 + E2)/72)1/2] 

which tends to x*/4 as 77 -X o in view of (B.9) and since ((282 + E2)/E2)1/2 - 1. Hence, the beliefs 
associated with this equilibrium correspond to the mixed equilibrium of the game g(x*). Conse- 
quently, for t7 -- oo, we replicate Harsanyi's results. 

In the other extreme case where r7 - 0 it is easily seen that x(71) -+ 2 for the unique solution of 
(B.5). Hence, in the limit player i chooses a, if xi > 2 and pj if x, < 2. This choice is in agreement 
with equilibrium selection according to risk dominance and, thus, with the main result of the present 
paper. Note that in the special case where x* = 2, the unique solution of (B.5) is given by x(q) = x*. 
Hence, in this case, the beliefs generated by the Bayesian equilibrium do not converge to a Nash 
equilibrium of the limit game g(x*), but rather to the correlated equilibrium in which both a and p 
are played with probability 1/2. 
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