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Abstract

I argue that speci�cation error is a feature not a bug. In the presence of speci�cation

error maximum likelihood never-the-less minimizes the Kullback�Leibler divergence.

I argue that this is a poor measure of the distance of a theory from data and that

consequently maximum likelihood has poor robustness properties with respect to spec-

i�cation error. I de�ne the weak convergence based notion of speci�cation consistency

and show that while maximum likelihood is not generally speci�cation consistent, the

method of moments is. The lack of robustness of maximum likelihood is especially

problematic with the types of theoretical models used to analyze laboratory data.
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like Copernicus, Lucas thought that a beautiful simple model that �ts less

well than a more complicated ugly model is somehow closer to the truth

[Sargent (2024)]

1. Introduction

In a public goods experiment conducted by Nikiforakis and Normann (2008) four

participants are given 20 tokens each worth roughly 7.5 cents. The tokens can be

kept or contributed to a common pool in which case their value is multiplied by 0.4

and this number of tokens is awarded to every player. Each group of four participants

played ten times and there were a total of six sessions: the empirical distribution of

contributions with the 120 observations over the last �ve rounds of play have a cluster

at zero and are reported below in Figure 1.1.

Figure 1.1: Data and Estimates

An investigator would like to know if a model of identical slightly altruistic play-

ers each willing to contribute a token, but who have an unknown probability β of

trembling uniformly over {0, 1, . . . , 20}, does a good job of describing the data. To

do this the �rst step is to estimate β from the data.

Not being a statistician the investigator runs down the hall to the o�ce of R.

A. Fisher and asks how to proceed. �Do maximum likelihood� says Fisher. The
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likelihood function is graphed in Figure 1.2 below. The maximum likelihood estimate

is β̂ = 1 resulting in a prediction that contributions should be uniformly distributed.2

This uniform distribution is shown above in Figure 1.1. The investigator concludes

that the model does an extremely poor job of describing the data.

Figure 1.2: Likelihood Function

The investigator has an ambitious research assistant who runs down the hall to

the o�ce of K. Pearson3 who says �Use the method of moments.� Matching the

expectation generated by the model to the sample average of contributions of 1.7

gives an estimate of β̂ = 0.078 resulting in a spike at 1 shown above in Figure 1.1.

The research assistant returns in triumph to the investigator.

I should emphasize that while maximum likelihood does a poor job in this example,

any likelihood based approach, including Bayesian inference, has the same di�culty.

This can be seen in Figure 1.2 above which plots the likelihood function (not the

2The reported maximum likelihood estimate is the constrained estimate β ≤ 1. The likelihood
function remains well-de�ned for larger values of β, however, as the unconstrained estimate is β̂ =
1.01, this makes little di�erence.

3Fisher and Pearson, two of the founders of the discipline of mathematical statistics, had a heated
dispute over whether maximum likelihood or the method of moments is the better procedure. See
Pearson (1936).
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log-likelihood function) so that it is proportional to the Bayesian posterior with a

uniform prior. As can be seen all the weight is on unrealistically high values of β.

What is happening in this example? It is highly unlikely that the data is generated

by sampling error from a uniform distribution over {0, 1, . . . , 20}: the probability of

drawing 82 zeroes in 120 observations is about 2 × 10−14. Rather the issue here is

speci�cation error: the model contemplates contributions of 1 while they are in fact

0.

The purpose of this paper is to show that the problem in this example is endemic

to likelihood based methods. It is due to the fact that in the presence of speci�cation

error the Kullback�Leibler divergence is asymptotically minimized by maximum like-

lihood. I show that this divergence is a poor measure of the similarity between two

distributions. It overemphasizes low probability events about which economists rarely

are interested; it ignores important aspects of the data; and it fails the fundamental

test that if one probability measure converges weakly to another then the divergence

should go to zero. By contrast I show that if divergence is given by a measure of the

distance between theoretical and empirical moments then weak convergence is if and

only if this divergence goes to zero. I conclude that the distance between theoretical

and empirical moments is a good measure of �t, and that the method of moments is

consequently more robust to speci�cation error than maximum likelihood.

Before proceeding to the analysis, let me discuss the obvious objection to the

example: if the model is misspeci�ed, then surely the solution is to �nd a better

speci�cation? For example, include sel�sh types as well as mildly altruistic types, or

replace mildly altruistic types with sel�sh types. There are a number of reasons this

may not be a good idea.

First, as is commonplace to observe, the purpose of models is not to mimic reality

but rather to provide a simpli�ed but none-the-less useful guide to reality. The usual

example is that of stylized subway maps which do an abysmal job of re�ecting reality

but are extremely useful. Even in the hard sciences we do not �nd, for example,

physicists studying the quantum interactions of particles using models that include

gravitational forces. I am not sure that the clear conclusion from this understanding

is always drawn: speci�cation error is not a bug, it is a feature. A simple model that

does a good but not perfect job of re�ecting reality is a good model.

Second, there may be good reasons for choosing di�erent speci�cations or more

complex models. However, it does not make sense to choose a di�erent model because
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a particular estimation procedure has bad properties. That is, while it might be a

good idea to introduce sel�sh types to better explain the data, it is not a good idea

to introduce them simply because maximum likelihood estimation will behave better.

Third, let me indicate that, in the example, introducing adding sel�sh types or

replacing mildly altruistic types with sel�sh types is not clearly a good idea. In

either case both maximum likelihood and the method of moments will do a good job

�tting the data: they will do so by concluding that there are no mildly altruistic

types. Unfortunately, while this does a good job of explaining the one treatment I

have just described, the Nikiforakis and Normann (2008) experiment included four

other treatments in which it is possible, at a cost, to punish free-riders. If there are

only sel�sh players who tremble, the prediction is that this will make no di�erence

to expected contribution levels: they should remain low, on the order of 2. In fact,

when there is the possibility of punishment, average contributions4 are much higher:

the average is 13.3. This grossly contradicts both a model of only sel�sh players and

a two-type model estimated from the no-punishment data. By contrast, the mild

altruism model, either because players are concerned with fairness as in Fehr and

Schmidt (1999), or because they understand the need to discourage free-riding as in

Levine (2024), can predict much higher contributions when there is the possibility

of punishment. In other words, there is good reason for wanting to know that the

mild altruism model does not do too badly in the base model without punishment,

and maximum likelihood fails to capture how well it does.

Mathematically, I consider a limit in which the truth and the model approach each

other. In this setting, under suitable regularity conditions, I show that the method

of moments estimator approaches the truth but that maximum likelihood need not.

In most of the laboratory applications I consider, better and better approximations

are relevant. However, there is an important case in which it makes sense to consider

a sequence of di�erent truths that approach a �xed theoretical model: this is when

the theoretical model has a continuous density and the true model is discrete. For

example, choices are on a �ne grid and this is modelled with a continuous density.

In this case the relevant limit is to consider �ner and �ner grids so that the truth

approaches the theory, rather than the other way around. This is often the case

outside the laboratory.

4This average is also computed over the �nal �ve periods. There are 480 observations.
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When the truth approaches a �xed theory I am able to give a positive result

concerning maximum likelihood. Suppose that the theoretical model has a continuous

strictly positive density function and that an identi�cation condition is satis�ed. Then

in the limit maximum likelihood approaches the truth. This extends existing results

about speci�cation error in maximum likelihood that rely on the Kullback-Leibler

divergence. However, I also show that the assumption of a continuous strictly positive

density function fails in quite ordinary examples.

2. Literature Review

To begin with, it cannot be the case that maximum likelihood always has di�erent

properties than the method of moments. In the linear regression model with normally

distributed errors maximum likelihood minimizes mean square error, so it is a method

of moments estimater and shares the good properties of the method of moments.

Moreover, the method of moments is not a cure for severe speci�cation error: for

example, as Heckman (1979) points out, sample selection bias can be a severe problem

even in the linear regression model.

More broadly, however, maximum likelihood diverges from the method of mo-

ments, and there is a large literature examining the impact of speci�cation error

on maximum likelihood. Without reviewing all of the many papers written on the

subject, the central point is that these papers focus on relative entropy, the Kullback-

Leibler divergence, because maximum likelihood asymptotically minimizes this in the

presence of speci�cation error.

In time series analysis, robust control theory, as in Hansen and Sargent (2001)

and Hansen et al (2006), attempts to �nd control methods that are robust to pertur-

bations in the model. This theory is based on perturbation that are small as measured

by Kullback-Leibler divergence. Watson and Holmes (2017) provide a good overview

of this literature.

There is also a literature that asks when maximum likelihood is consistent de-

spite the presence of speci�cation error. An early paper is Gourieroux, Monfort and

Trognon (1984), which gives su�cient conditions for MLE to give consistent estimate

of moments in a misspeci�ed model. There are two points to be made about this.

First, the family studied is the linear exponential family, so is absolutely continuous

with respect to the base model: this limits the class of perturbations to those that

have �nite Kullback-Leibler divergence. I will show that this is very limiting. Second,
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if the goal is to get consistent estimates of the moments, the method of moments,

rather than maximum likelihood, seems like an obvious approach.

Maximum likelihood with speci�cation error is sometimes called quasi-maximum

likelihood or pseudo maximum likelihood. Newey and Steigerwald (1997) give con-

ditions under which quasi-maximum likelihood can be used with non-normal distri-

butions. Again the class of perturbations they consider have a continuous density so

�nite Kullback-Leibler divergence.

There is also a literature showing that maximum likelihood shares the property of

ordinary least squares that estimates remain consistent in the face of a misspeci�ed

variance-covariance structure of the errors. This is discussed, for example, in Levine

(1983) and Andrews (1991). Again, this departure from the theory is well measured

by the Kullback-Leibler divergence.

I should indicate that the literature generally considers a �xed theoretical model

and sequence of truths that converge to the theory. By contrast I consider the more

general case where both the theory and the truth converge to each other.

3. The Setup

The object of interest is the outcome of the experiment which is taken to be a

vector y. This could be the level of contribution of an individual to a public good

experiment (a scalar) or it could be a vector representing the play of two players in

a match, and so forth. The possible outcomes are bounded and speci�cally space of

possible outcomes Y is taken to be a compact subset of a �nite-dimensional vector

space. This space is endowed with the usual topology and σ-algebra.

The goal is to model the distribution of outcomes in the underlying population

from which participants are drawn in an iid fashion. This distribution F lies in F the

space of probability measures over Y . A distribution F ∈ F represents the random

draw of a participant. Each choice of that participant can be represented by a random

variable, a scalar valued integrable function g : Y → <. Denote the expectation of

that random variable by Eg |F ≡
´
g(y)dF (y).

Note that in the laboratory there is generally a single geographical location and all

observations are collected from the same population at (roughly) the same time. As

a result it is rare to condition on exogenous variables x when working with laboratory

data. For this reason and to make the exposition more transparent, I will not consider
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exogenous variables in the text. Appendix III shows how the results extend to the

case of exogenous variables.

Weak Convergence

By way of background, a sequence of distributions converges weakly, F n → F , if

for every bounded continuous function g : y → < it is the case that Eg |F n → Eg |F .

It is important here that g is continuous: this means that it preserves the notion of

closeness in the underlying space X.

Weak convergence is the gold standard of convergence for probability measures.

Three examples illustrate this. First, weak convergence preserves ordinary conver-

gence. That is, if yn → y, then a point mass on yn converges weakly to a point mass

on y. Second, if F n is a discrete uniform distribution with support on n points then

F n converges weakly to the continuous uniform distribution. Finally, if you think that

an average is approximately normally distributed in a large sample then you agree

that weak convergence is the gold standard. Speci�cally, if ỹn are random variables

with zero mean and unit variance then the distribution of (1/T )
∑T

t=1 ỹ
n converges

weakly to the standard normal.

Because Y is compact the space of probability distributions F over Y is compact

with respect to the topology induced by weak convergence. This means that sequences

F n of probability distributions have subsequences that converge weakly to a limiting

distribution.

The classical reference on weak convergence of probability measures is the book

by Billingsley (1968).

Total Variation

There are other notions of the convergence of probability measures, the most

important of which is the total variation. The distance between two probability

measures in total variation is de�ned as
∥∥∥F − F̃∥∥∥ = supA |F (A) − F̃ (A)| where the

sup is taken over all Borel subsets of Y . However, convergence of total variation fails

in all three of the examples above. If y 6= z then ‖y − z‖ = 1; if F n is a discrete

uniform and F the continuous uniform then ‖F n − F‖ = 1; and if ỹn are normalized

binomial averages and F standard normal then ‖F n − F‖ = 1.

From the Portmanteau Theorem if ‖F n − F‖ → 0 then also F n converges weakly

to F .
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Kullback-Leibler Divergence

The next step is to assess how maximum likelihood behaves in a misspeci�ed

model. By way of background, the measure F is absolutely continuous with respect

to F0 if F0(A) = 0 implies F (A) = 0. The Radon�Nikodym theorem says that in

this case there is a non-negative measurable density function f : y → < such that

F (A) =
´
A
f(y)dF0(y)

Suppose that F, F̃ are absolutely continuous with respect to a common F0 so have

densities f, f̃ . If F̃ is absolutely continuous with respect to F then the Kullback�

Leibler divergence is de�ned by DKL(F̃ |F ) =
´
f̃(y) log(f̃(y)/f(y))dF0(y) otherwise

DKL(F̃ |F ) ≡ ∞. This is non-negative and is zero if and only if F = F̃ , but it is not

a metric because it is not symmetric. For completeness I prove this in Proposition

7.1 in Appendix I. From Pinsker's Inequality if DKL(F n|F )→ 0 or DKL(F |F n)→ 0

then ‖F n − F‖ → 0 and this in turn implies F n converges weakly to F .

Often F0 is the uniform distribution, either continuous or discrete, so that f and

f̃ are the ordinary continuous or discrete density functions. However the theory can

accomodate mixed continuous discrete distributions such as the Tobit. The Kullback�

Leibler divergence is an essential tool for understanding the behavior of maximum

likelihood in a misspeci�ed model.

If F (β) is a parametrized family of distributions and samples are drawn from

a distribution F̃ then asymptotically maximum likelihood minimizes the Kullback�

Leibler divergence DKL(F̃ |F (β)). Although it is more generally true, it is easy to see

in the case where F̃ is discrete, that is, observations lie in a �nite set Y . In this case

the log-likelihood in the sample is proportional to
∑

y∈Y φ(y) log f(y|β) where φ(y)

is the fraction of observations on y in the sample. Asymptotically this converges in

probability to∑
y∈Y

f̃(y) log f(y|β) = −DKL(F̃ |F (β)) +
∑
y∈Y

f̃(y) log f̃(y)

Convergence is uniform in β since Y is �nite and f bounded. Hence any sequence of

maximizers of the log-likelihood function has a limit point that is a minimizer of the

Kullback�Leibler divergence.
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4. An Assessment of the Kullback�Leibler Divergence

I now examine whether the Kullback-Leibler divergence is a useful measure of

the distance between two distributions. In discussing weak convergence versus total

variation I showed that there are three simple tests which weak convergence passes

and total variation fails. Like total variation, Kullback-Leibler divergence fails all

three tests.

Speci�cally, if y 6= z then DKL(y|z) =∞; if F n is a discrete uniform and F the

continuous uniform then DKL(F n|F ) = DKL(F |F n) = ∞; and if ỹn are normalized

binomial averages and F is standard normal then DKL(F n|F ) = DKL(F |F n) = ∞.

All of these results are special cases of mutually singular distributions.

Two distributions F, F̃ are mutually singular if there are two disjoint sets A∪B =

Y such that F (A) = F̃ (B) = 0. In each of the test cases F n and F are mutually

singular: take A to be the support of F n.

It is apparent if F, F̃ are mutually singular
∥∥∥F − F̃∥∥∥ = 1. In addition since

F (B) = F̃ (A) = 1 neither is absolutely continuous with respect to the other, so

DKL(F̃ |F ) = DKL(F |F̃ ) =∞.

Continuous distributions can be approximated by discrete distributions in the

sense of weak convergence. However, a discrete and continuous distribution are mu-

tually singular, so the Kullback�Leibler divergence provides no useful information

about this convergence.

Labels Matter

Example 4.1. Consider a simple variation on the motivating example in the intro-

duction. Take Y to be the evenly spaced n-grid on [0, 20] where n ≥ 21 and β0 ∈ [0, 1].

Let F n be the �warm glow of giving� model that places weight 1 − β + β/n on the

�rst strictly positive grid point and β/n on the remainder. Suppose that the data is

given by F̃ n(β0) which has a mass point at 0 with probability 1− β0 + β0/n with the

remaining points each having probability β0/n.

The expected log-likelihood function for this model is given by (1−β0/n) log(β/n)+

(β0/n) log(1− β + β/n). The derivative with respect to β is

(1/n)(1− β0/n)

β/n
− (1− (1/n))(β0/n)

1− β + β/n
,

and the second derivative is negative so that the maximum is characterized by the �rst
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order condition. Evaluating the derivative at β = 1 gives 1−β0. Hence the constrained
asymptotic maximum likelihood estimator is β̂ = 1, and the unconstrained estimator

bigger than 1.

The method of moments equates the actual mean of 10β0 to the theoretical mean

(1− β)(21/n) + 10β giving

β̂ = β0 − (21/n)
1− β0

10− 21/n
,

slightly less than the true value. (In the example β̂ is slightly higher than the empirical

value due to the fact that the data is not in fact uniform.) Here a slightly too low

spike is predicted at a slightly too high contribution level.

So far this analysis has added nothing to the example in the introduction. The

point here is a di�erent one. Consider an alternative theoretical model, a model of

high altruism. With high altruism if there is no trembling, that is with 1− β proba-

bility, the participant contributes not 21/n, but rather 20. The method of moments

now yields β̂ = 1 and unless β0 is large the true mean of 10β0 is poorly matched

by the theoretical mean of 10. Maximum likelihood agrees with this assessment and

therein lies the problem.

The likelihood function and the Kullback�Leibler divergence here are exactly the

same regardless of whether the theoretical mass point is at n/21 or 20. This is despite

the fact that the two contribution levels are very di�erent, and despite the fact that

the warm glow theory matches the data reasonably well and the high altruism theory

does not. While values of y have economic meaning - a contribution of 21/n is much

closer to 0 than a contribution of 20 - entropy based measures such as the Kullback�

Leibler divergence make no use of this information. The labels do not matter to

entropy - but for economic analysis they should. According to the Kullback�Leibler

divergence the warm glow and high altruism models are equally bad because there

is no di�erence between a contribution of 21/n and a contribution of 10. From an

economic perspective this is not true. By contrast the method of moments says that

the warm glow theory does much better than the high altruism theory - and indeed

this is the case.

Sharp Theories

An important theory is subgame perfection with sel�sh money maximizing players.

This is a sharp theory in the sense that it makes de�nitive predictions, and derives
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these predictions without estimation - �out-of-sample� - by reading the experimental

instructions. By contrast, level-0 theory (see Stahl and Wilson (1994)) says that

players randomize uniformly over all actions. This is not a sharp theory, indeed, a

rather fuzzy one, but is also entirely �out-of-sample.�

There are three classical experiments in which the general consensus is that sub-

game perfection does well. These are the best-shot game, the market auction game,

and the one-shot prisoner's dilemma game. The best-shot game is a two player se-

quential public goods contribution game where contributions are in {0, 1, . . . , 21} and
only the highest contribution matters. The prediction of subgame perfection is that

the �rst mover never contributes. In the Prasnikar and Roth (1992) there are ten

rounds. From the 7th round on, in treatments where participants are fully informed of

the extensive form, the �rst mover indeed never contributes. By contrast the level-0

theory predicts that the �rst mover will contribute zero only 4.5% of the time.

The market auction game is a ten player game in which nine players submit bids

on an object worth $10.00 in increments of 5 cents. The tenth player can accept or

reject the highest bid. The prediction of subgame perfection is that the highest bid

will be either $9.95 or $10.00 and that this will be accepted. In Roth et al (1991)

there are ten rounds. In the �nal six rounds this prediction is always correct. By

contrast, the level-0 theory predicts that the high bid will be $9.95 or $10.00 only

8.6% of the time.

In the one-shot prisoner's dilemma game the prediction of subgame perfection is

that all players will defect. In the �nal of ten rounds played against strangers Dal Bo

(2005) �nds that in fact 94.2% of them do. By contrast, the level-0 theory predictions

that only 50% of them should defect.

As indicated: the consensus is that subgame perfection does well in describing

participants play in these experiments, and clearly level-0 does not. However: because

it is a sharp theory, subgame perfection also predicts that certain things will not

happen that in fact do. In best shot it predicts that the second mover will always

contribute 4. In fact the average contribution of the second player in the tenth of ten

rounds is 3.88. In the market auction subgame perfection predicts that if the high

bid is $9.95 all bids should be $9.95. This is never the case. In the one-shot prisoner's

dilemma subgame perfection predicts no cooperation, while in fact there is a 5.8%

cooperation rate.

In the discrete case if for some y the theoretical density value f(y) is zero and the
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true density value f̃(y) > 0, no matter how small, thenDKL(F̃ |F ) =∞. In particular,

for all three experiments, the Kullback�Leibler divergence of subgame perfection from

the data is in�nite. By contrast the level-0 theory predicts everything has positive

probability so has a �nite Kullback�Leibler divergence. By the logic of maximum

likelihood the level-0 theory is the better theory.

Clearly if we modi�ed the theory of subgame perfection to include noise, for

example by using a quantal response model as in McKelvey and Palfrey (1995), or a

probability of uniform trembling as in the example in the introduction, the resulting

theory would better �t the data. However: there there are many choices of how to do

this, the resulting theory becomes complicated and not sharp, and the simple theory

is already working well. Certainly the fact that maximum likelihood does not work

well is not a good reason for complicating a simple and sharp model.

Small Probabilities Should Not Matter

Zero probabilities are special, and if Y is �nite we can always add some noise to

a theoretical model so that the theoretical probabilities are not zero. However: the

problem with zero probabilities is also a problem for very small probabilities.

Example 4.2. Consider the (hypothetical) example below where participants choose

between three alternatives A,B,C. In this experiment 90% of participants choose

A, 9% choose B and 1% choose C. There are two theories labeled F1 and F2. The

�rst theory predicts that 90% of people will choose A and that almost all of the rest

will choose B with only a tiny, but non-zero, fraction 10−100 choosing C. This is a

pretty good theory. By contrast the second theory gets A and B hopeless muddled,

with 90% choosing B rather than A and 9% choosing A rather than B - the direct

opposite of reality. However: the second theory correctly predicts that 1% of people

will choose C.

In Table 4.1 below I report these numbers and in the �nal row I compute the

Kullback�Leibler divergences between the true model and the theories. The point is

that the second theory has smaller Kullback�Leibler divergence than the �rst so is

preferred by maximum likelihood. In other words: the entropy based measure cares

very little about getting the high probability events A,B correct, and very much

about getting the low probability event C right. This stands common sense on its

head.
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F̃ F1 F2

A 0.90 0.90 0.09
B 0.09 0.10− 10−100 0.90
C 0.01 10−100 .01

DKL(F̃ |F ) 2.25 1.87

Table 4.1: KL Divergence

5. Speci�cation Consistency and the Generalized Method of Moments

This paper is about speci�cation error not sampling error, and in the intended

applications it should be possible to choose large samples if these are required. For

these reasons, I will abstract from sampling error by assuming an in�nite sample.

More concretely, I will in this section replace sample moments with the corresponding

expectations. Appendix II discussed sampling error.

Let β ∈ B a �nite dimensional compact parameter space. A sequence of models

F n(β), each continuous in β, approximates F̃ n at β0 if, for all βn → β, the approx-

imations F n(βn) → F (β) and F̃ n → F (β0). This implies that the signed measure

F n(β0)− F̃ n converges weakly to zero. Here F̃ n may represent di�erent experiments,

for example, re�ning a grid over which choices are made. Note that since F n(β) is

continuous and converges uniformly to F (β) it follows that F (β) is also continuous

in β.

If F n(β) approximates F n at β0 an asymptotic estimation procedure is a sequence

of subsets Bn of the parameter space. An asymptotic estimation procedure is speci�-

cation consistent if for any β̂n ∈ Bn the sequence F n(β̂n) converges weakly to F (β0).

The idea is that Bn corresponds to the limits of estimators in a large sample. Since

F n(β̂n) → F (β0) and F̃ n → F (β0) it follows that the signed measure F n(β̂n) − F̃ n

converges weakly to zero. Intuitively what this says is if the approximation is good

enough then the estimates are approximately correct.

As an example of an asymptotic estimation procedure, suppose that F n(β) has

a continuous density function fn(y|β) with respect to some underlying distribution

F n
0 . In this case maximum likelihood in which Bn is de�ned as the maximizers of

E log fn(y|β)|F̃ n is an asymptotic estimation procedure.

The next two examples show that maximum likelihood is not generally speci�ca-

tion consistent. The �rst example is derived from example 4.1 and the limiting model

F has a mass point at zero. However, mass points are not needed, and the second
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example uses density functions that are strictly positive and continuous.

Labels Again

Example 5.1. As in 4.1 take Y to be the evenly spaced n-grid on [0, 20] where n ≥ 21

and take B = [0, 1]. As in that example F n is a �warm glow of giving� model that

places weight 1 − β + β/n on the �rst strictly positive grid point and β/n on other

grid points. The �true� model is F̃ n which has a mass point at 0 with probability

1−β0 +β0/n with the remaining points each having probability β0/n. Note that this

is continuous in β as required.

De�ne F (β) to be a mass point at 0 with probability 1−β and with the remaining

weight of β uniformly distributed over [0, 20]. If βn → β then F n(βn) → F (β). In

addition F̃ n → F (β0) so that F n approximates F̃ n at β0. As shown previously,

asymptotic maximum likelihood when the true distribution is F̃ n always minimizes

DKL(F̃ n|F n(β)) by choosing β̂ = 1 regardless of the true value of β0. It follows that

F n(β̂n) converges weakly to the uniform distribution on [0, 20] so maximum likelihood

is not speci�cation consistent for β0 < 1.

Continuous Densities

Example 5.2. Suppose that Y = [0, 1] and that B = [0, 1]. Take F̃ = F (β0) and

the distributions F (β) and F n(β) are given by strictly positive density functions with

respect to Lesbesgue measure f(y|β), fn(y|β) jointly continuous in (y, β) as described

next.

Assume that n ≥ 2. Speci�cally, the density f(y|β) is linear with f(1|β) =

(1 + 99β)/100 and f(0|β) = 2 − f(1|β). The density fn(y|β) is continuous and

piecewise linear with knots at β ∈ {1/n, 2/n} with fn(0|β) = f(1/n|β) = e−βn
2
,

fn(1|β) = f(1|β) and

fn(2/n|β) =
2− (3/n)e−βn

2 − (1− 2/n)f(1|β)

1− 1/n
.

For y > 0 suppose that βn → β. Then the densities f̄n(y) ≡ fn(y|βn) → f(y|β)

converge pointwise and from Lesbesgue's dominated convergence theorem this implies

weak convergence of the distributions F n(βn)→ F (β).

The expected log-likelihood function is Ln(β) =
´
f(y|β0) log fn(y|β)dy. Hence
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Ln(0) ≥ (1/100) log(49/50). For any β > 0

ˆ 1

1/n

f(y|β0) log fn(y|β)dy ≤ 2 log 4.

However
´ 1/n
0

f(y|β0) log fn(y|β)dy = − (2− f(1|β0)) βn, so Ln(β) ≤ 2 log 4 − βn.

Hence for n > (1/β)(2 log 4 − (1/100) log(49/50)) it follows that β̂n < β, and in

particular the asymptotic maximum likelihood estimator β̂n → 0 regardless of β0, so

maximum likelihood is not speci�cation consistent. In particular, F n(β̂n) converges

weakly to a F (0), the linear density f̂(0) = 199/100, f̂(1) = 1/100 even if, in fact,

β = 1 and the true density is uniform.

The key point here is that, while convergence of the densities implies weak conver-

gence, the convergence is pointwise but not uniform. If the convergence was uniform,

this would imply speci�cation consistency of maximum likelihood. This example is

an elaboration of example 4.2 involving small probabilities. Here, on the left of the

theoretical model, the probabilities are tiny and this forces maximum likelihood to

make poor choices.

The Method of Moments is Speci�cation Consistent

Let µn(y|β) be `-dimensional vector valued functions jointly continuous in (y, β).

Denote by Γ the convex hull of µ(Y ). Let h : Γ → <+ be non-negative, continuous,

and satisfy h(γ) = 0 if and only if γ = 0. One obvious example is h(γ) = ‖γ‖2

for some norm on <`, but other functions can be used. The generalized method of

moments with respect to µn, h is the asymptotic estimation procedure given by

Bn = arg min
β
h
(
Eµn(β)|F̃ n

)
.

The ordinary method of moments is de�ned by ν(y), an `-dimensional vector

valued function with µn(y|β) = ν(y) − Eν |F n(β). Since F n(β) is assumed to be

continuous in β, F n(βt) → F n(β) so, as ν is continuous, Eν |F n(βt) → Eν |F n(β).

Consequently µn(y|β) is jointly continuous in (y, β), thus the ordinary method of

moments is a special case of the generalized method of moments.

Call µn convergent if it converges uniformly to µ, and Eµ(β0)|F (β0) = 0. From

the uniform limit theorem since the µn are continuous so is µ.

Proposition 5.3. The ordinary method of moments is convergent.
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Proof. By de�nition µn(y|β) = ν(y) − Eν |F n(β). De�ne µ(y|β) ≡ ν(y) − Eν |F (β).

Then ν converges uniformly to itself and since for any βn → β by assumption

F n(βn) → F (β) it follows that Eν |F n(βn) → Eν |F (β), that is the convergence of

F n(β) to F (β) forces the uniform convergence of Eν |F n(β) to Eν |F (β). Finally,

Eµ(β0)|F (β0) = Eν(y)|F (β0)− Eν |F (β0) = 0.

Say that F (β) is identi�ed with respect to µ if, for any β ∈ B, Eµ(β)|F (β0) = 0

implies β = β0. To illustrate, consider the ordinary method of moments with ν(y) = y.

In the �rst example Eµ(β)|F (β0) = 10(β−β0) so that model is identi�ed with respect

to µ. In the second example Eµ(β)|F (β0) = (201 + 99(β − β0))/600 so that model is

also identi�ed with respect to µ.

Note that if a model is identi�ed then speci�cation consistency is if and only if

for all β̂n ∈ Bn it is the case that β̂n → β0.

Theorem 5.4. Suppose that F n(β) approximates F̃ n at β0, that µ
n is convergent, and

that F (β) is identi�ed with respect to µ. Then the generalized method of moments

with respect to µn, h is speci�cation consistent.

Proof. It su�ces to show that β̂n → β0. Because B is compact it necessary only to

show that if β̂n converges, it converges to β0.

Suppose that βn → β. Then

Eµn(βn)|F̃ n = E (µn(βn)− µ(β)) |F̃ n + Eµ(β)|F̃ n.

The �rst term converges to zero since µn converges uniformly to µ and the second

to Eµ(β)|F (β0) because µ(y|β) is continuous in y and F̃ n converges weakly to F (β0).

Hence

Eµn(β̂n)|F̃ n → Eµ(β̂)|F (β0). (5.1)

Next, using the fact that the sequence is approximating, it must be that F n(β0)→
F (β0) and F̃

n → F (β0). From equation 5.1 with βn = β0 if follows that Eµ
n(β0)|F̃ n →

Eµ(β0)|F (β0). Since weak convergence implies convergence of the moments and h is

continuous with h(0) = 0

limh
(
Eµn(β0)|F̃ n

)
= h (Eµ(β0)|F (β0)) = 0.
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Since

h
(
Eµn(β̂n)|F̃ n

)
≤ h

(
Eµn(β0)|F̃ n

)
and h is non-negative and continuous

h
(

limEµn(β̂n)|F̃ n
)

= limh
(
Eµn(β̂n)|F̃ n

)
≤ limh

(
Eµn(β0)|F̃ n

)
= 0.

Applying equation 5.1 to βn = β̂n this implies that h(Eµ(β̂)|F (β0)) = 0.

From the last equation and by the de�nition of h if follows that Eµ(β̂)|F (β0) = 0.

The identi�cation condition then implies that β̂ = β0. Hence β̂n → β0 implying

speci�cation consistency.

Appendix II shows that Theorem 5.4 remains true in a large enough sample when

the asymptotic limits β̂n are replaced with estimates derived from sample averages.

A Remark on Speci�cation

The theoretical model is speci�ed as F n(β) giving rise to the moments µn(β) ≡
Eµ(β)|F n(β) as a function of β. It should be clear that any other F̂ n(β) satisfying

Eµ(β)|F̂ n(β) = µn(β) will give the same results as F n(β), and in particular the

generalized method of moments requires specifying only µn(β) and so is robust with

respect to any speci�cation error, large or small, that leaves µn(β) intact.

Measurement versus Estimation

There are many ways of choosing the particular moments µ that will be used

in the generalized method of moments estimation. I view this as a feature not a

bug: it enables the investigator to set priorities for which moments are economically

important, and it enables the reader to see whether the investigator has cherry-picked

obscure moments.

Moments are important not only for estimation, but also for measurement. That

is, whatever estimation technique is employed, reporting the theoretical versus the

sample moments provides a good way of assessing how successful the model is. For

example, in studying self-con�rming equilibrium expected losses can be report as

suggested in Fudenberg and Levine (1997). In studying behavior mechanism design

expected welfare can be reported as suggested by Levine (2024). In studying the
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repeated prisoner's dilemma the fraction of participants who cooperate can be re-

ported and has been used by investigators such as Dal Bo (2005) and Fudenberg and

Karreskog Rehbinder (2024).

Measurement is particularly important because ideally theories are not estimated

but make predictions based on the experimental instructions: subgame perfect Nash

equilibrium is such a theory, as are the theories in Levine (1986), Fehr and Schmidt

(1999) and Levine (2024). The point is that moments, not likelihoods or divergences,

are a good measure of success.

6. Robustness of Maximum Likelihood

If F n(β) has a density function that is su�ciently regular then maximum likeli-

hood is a generalized method of moments estimator. Speci�cally, say that F n(β) is

continuous, if there is a density function fn(y|β) with respect to some F n
0 , that is

F n(A|β) =
´
A
fn(y|β)dF n

0 (y), and fn(y|β) is strictly positive and jointly continuous

in (y, β). Then µn(y|β) ≡ maxβ E log(fn(y|β)|F̃ n − log(fn(y|β) is jointly continu-

ous in (y, β). Minimizing h
(
Eµn(β)|F̃ n

)
with respect to β maximizes the likelihood

function, so in this case maximum likelihood is a generalized method of moments

estimator.

Examples 5.1 and 5.2 show the limitations of this approach: in neither case is

µn convergent. In example 5.1 F n(β) is an n-grid in [0, 1] and F n
0 can be taken

to have positive mass on the grid points and zero everywhere else. The density is

then de�ned in the ordinary way at the grid points, and can be extended by linear

extrapolation between the grid points. So far so good: but fn(y|β) converges to a

mass with probability 1− β at 0 and a continuous uniform elsewhere and this is not

continuous so the convergence is not uniform. In example 5.2, as shown, the densities

also converge but not uniformly. While uniform weak convergence of F n(β) to F (β)

implies that the ordinary method of moments is convergent it does not imply that

maximum likelihood is convergent.

The primary conceptual experiment has been that of a �xed truth and better

approximations. The notion of approximation is general enough to allow another

conceptual experiment, and one that is one widely used. That is to �x the model and

consider truths that better approximate the model. This makes sense, for example,

if the model has a continuous density function and the truths are discrete over �ner
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and �ner grids. In this case, with F n = F , maximum likelihood is better behaved

since certainly µn converges uniformly to itself.

Say that F (β) is identi�ed if for any pair β, β̃ ∈ B it is the case that F (β) = F (β̃)

implies β = β̃.

Theorem 6.1. Suppose that F n(β) = F (β) approximates F̃ n at β0 and that F (β) is

identi�ed and continuous. Then maximum likelihood is speci�cation consistent.

Proof. De�ne µ(y|β) ≡ log f(y|β) − maxβ E log f(y|β). Theorem 5.4 then applies

provided that Eµ(β0)|F (β0) = 0 and for any β ∈ B, Eµ(β)|F (β0) = 0 implies β = β0.

That is to say: E log f(y|β0)|F (β0) ≥ E log f(y|β)|F (β0) with equality only if F (β) =

F (β0). This follows fromDKL(F (β0)|F (β)) = E log f(y|β0)|F (β0)−E log f(y|β)|F (β0)

and Proposition 7.1 in Appendix I.

Notice that there is an asymmetry. In example 5.2 DKL(F (β0)|F n(β0))→∞ and

maximum likelihood is not speci�cation consistent. By contrast if F is the theoretical

model and F n(β0) generates the data DKL(F n(β0)|F (β0))→ 0 and indeed maximum

likelihood is speci�cation consistent by Theorem 6.1.

The existence of a strictly positive continuous density function f(y|β) with respect

to some F0 is important and not always satis�ed, as the next three simple examples

show. In the �rst, there is no density function. In the second, there is a strictly

positive density function, but it is not continuous. In the third, there is a density

function that vanishes at a single point. In all cases the conclusion of Theorem 6.1

fails so that maximum likelihood is not robust, yet Theorem 5.4 implies that an

appropriate ordinary method of moments is speci�cation consistent.

No Density

Example 6.2. Consider a continuous version of example 4.1 where the degree of

altruism is unknown. Speci�cally, suppose that Y = [0, 20], B = [0, 1] × [0, 20] and

that the theoretical model F (β) has a spike at β2 with probability 1−β1 and trembles

uniformly over [0, 20] with probability β1. The data is generated by F̃ n on an n-grid

in [0, 21]. With some probability the two grid points adjacent to β0 are chosen and

with the remaining probability the remaining grid points are chosen such that in the

limit as n → ∞ the probability distribution over those points weakly converges to

the uniform distribution over [0, 20]. Hence F̃ n converges weakly to F (β0).
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Because F (β) has a spike at β2 to be absolutely continuous with respect to a

measure F0 it must be for β1 < 1 that F0(β1, β2) > 0. However, there is no single

measure F0 for which this is true for all β2 ∈ [0, 20]. Hence there is no density function,

hence no likelihood function, so maximum likelihood estimation is impossible. In

general this will be the case when the theoretical model has an atom (or atoms)

which move continuously with the parameters.

Note that the model F is not identi�ed with respect to the mean only, but is

identi�ed with respect to the mean and variance. Hence if a these two moments are

used together with an appropriate h the assumptions of Theorem 5.4 are satis�ed and

the ordinary method of moments is speci�cation consistent.

Discontinuous Density

Example 6.3. Now reverse example 4.1, so that the theory is that participants

are sel�sh, while in fact they are mildly altruistic. Speci�cally, Y = [0, 20] and

B = [1/10, 9/10]. Here F (β) is a �sel�sh� model that places weight 1 − β on 0 and

with probability β is uniform. The true model is F̃ n which has a mass point at 1/n

with probability 1 − β0 and with probability β0 is uniform. Hence the true model

converges weakly and uniformly to the theoretical model.

The theoretical model F (β) has a density with respect to the measure F0 which

places weight 1/2 on 0 and with probability 1/2 is uniform. The strictly positive

density is given by f(0|β) = 2(1 − β) and for y > 0 by f(y|β) = β/10. Hence the

expected likelihood function for each n is given by log(β/10), which is maximized at

β̂ = 9/10 and the true model does not converge to this for β0 < 9/10. However,

Ey = 10β so the ordinary method of moments with respect to ν(y) = y is identi�ed,

so Theorem 5.4 implies that it is speci�cation consistent

The problem here is that the density function is not continuous. That is, 2(1−β) =

f(0|β) = limy→0+ f(y|β) = β/10 only for β = 20/21 > 9/10.

Zero Density

Example 6.4. Suppose that Y = [0, 1] and B = [0, 1]. The theoretical model has

the density f(y|β) = (β + 1)yβ while the data is generated by F̃ n which is zero

with probability 1/n and drawn from f(y|β0) with probability (n − 1)/n. Then the

expected log-likelihood is −∞ regardless of β so Bn = B and maximum likelihood

is not robust. Again, as Ey = (β + 1)/(β + 2) which is strictly increasing in β, this

model is not problematic for the ordinary method of moments with ν(y) = y.
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7. Conclusion

Simple, sharp models are good models. In the laboratory participants often cluster

on a small number of choices, as in the Nikiforakis and Normann (2008) data de-

scribed in the introduction. Consequently, attention has focused on theoretical models

with a small number of types. Subgame perfection and many behavioral models often

assume a single type. Other models have several, but still a small number of types:

Levine (1986) has three types, Fehr and Schmidt (1999) twelve, and Levine (2024)

three. The level-k reasoning model of Stahl and Wilson (1994) is similarly used with

a small number of types. These are examples of simple sharp models.

Maximum likelihood has good e�ciency properties when there is no speci�cation

error. However, simple, sharp models necessarily have speci�cation error. Unfor-

tunately this means that maximum likelihood can provide misleading results. By

contrast, I have shown that the method of moments provides robust results for mod-

els that only approximate the truth.

The usual argument in favor of maximum likelihood is that if the model is speci�ed

correctly it converges (probabilistically) to the true limit at least as fast as any other

estimator. This argument loses its force in the universal case of speci�cation error.

It may well be preferable to converge less fast to a limit that well approximates the

truth rather than very fast to one that does not.

I should conclude by saying that I am not arguing �never do maximum likelihood�

or to throw away all the many empirical studies that have used maximum likelihood.

Indeed, I focus on experimental data for a reason. Outside the laboratory the most

common sort of model is one with a continuous density function, and if we think of

that as an approximation to data drawn from an underlying discrete density function

then Theorem 6.1 shows that maximum likelihood is speci�cation consistent. In the

laboratory, as in the examples, choices are often on grids that can be re�ned and

models with a small number of types are common, and here maximum likelihood is

more problematic.

The bottom line is that the method of moments is always a safe choice, and the

results here provide a guide to when maximum likelihood is.



23

Appendix I: Properties of the Kullback�Leibler Divergence

Proposition 7.1. DKL(F̃ |F ) ≥ 0 and DKL(F̃ |F ) = 0 implies F = F̃ .

Proof. Recall that F̃ should be absolutely continuous with respect to F or else

DKL(F̃ |F ) =∞. When absolute continuity is satis�edDKL(F̃ |F ) ≡ −
´
f̃(y) log(f(y)/f̃(y))dF0(y)

where by convention the integral is over the region where f̃(y) > 0 and in particular

it may be assumed that neither density vanishes in the region of integration.

De�ne q(x) = x − 1 − log x. This is non-negative and vanishes only at x = 1.

Since densities must integrate to one,
´ (

f(y)/f̃(y)− 1
)
f̃(y)dF0(y) = 0 so that

DKL(F̃ |F ) =
´
f̃(y)q(f(y)/f̃(y))dF0(y). This is clearly non-negative, proving the

�rst assertion.

If DKL(F̃ |F ) = 0, the set Y + on which q(f(y)/f̃(y)) > 0 must have F̃ measure

zero. Since q vanishes only at 1 this means that f(y) = f̃(y) on Y − Y +. Then

ˆ
Y=Y +

f(y)dF0 =

ˆ
Y=Y +

f̃(y)dF0 = 1

so Y + also has F measure zero. Hence F̃ = F .

Appendix II: Sampling Error and the Generalized Method of Moments

In a �nite sample it is necessary to replace the theoretical moment Eµn(β)|F̃ n

with the sample average µnT (β) drawn from F̃ n. It is well-known that under suitable

regularity conditions this converges uniformly to the theoretical moment. In the

current context this implies

Theorem 7.2. Suppose that F n(β) approximates F̃ n at β0, that µn, h is a gen-

eralized methods of moments estimator, that µn is convergent, and that F (β) is

identi�ed with respect to µ. Then there exists a T n such that for Tn ≥ T n any

β̂nTn ∈ arg minβ h(µnT (β)) satis�es β̂nTn → βo in probability.

Proof. The proof has two steps. The �rst is the well-known result that for �xed n as

T →∞ the limit points of β̂nT almost surely lie in Bn. This implies also convergence

in probability. Supposing this is the case, the main result then follows from a standard

diagonalization argument. Fix some ε. Then for Tn ≥ T n with probability at least

1 − ε it must be that β̂nTn is within ε/2 of Bn. Then letting n → ∞ it follows from

Theorem 5.4 that β̂nTn with probability at least 1− ε is within ε of β0.
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Although the �rst step is well-known, for completeness I provide a proof. Because

Y is compact and µn(y|β) continuous the assumptions A1, A2 and A3 of Andrews

(1987) are satis�ed so the uniform strong law of large number applies and µnT almost

surely converges uniformly in each component to Eµn |F̃ n, hence almost surely in all

components.

Suppose µnT converges uniformly to Eµn |F̃ n. For any convergent subsequence of

β̂nT → β̂ and any β ∈ B it is the case that h(µnT (β̂nT )) ≤ h(µnT (β)). From uniform

convergence Eh(µ(β̂))|F̃ n ≤ Eh(Eµ(β))|F̃ n so β̂ ∈ Bn. Hence the limit points of β̂nT

almost surely lie in Bn.

Appendix III: Exogenous Variables

The space of observations is now a product space: Y,X are compact subsets of a

�nite-dimensional vector space, and Z = Y × X. All de�nitions and results in the

text remain the same except that everywhere Y in the text should be replaced with

Z. Hence F n(β), F̃ n, F (β) are now distributions over Z rather than Y and moments

are µ(z|β).

The marginal F̃ n
X is de�ned for measurable A ⊆ X in the usual way by F̃ n

X(A) ≡´
Y×A dF̃

n(z). The new feature is this. The theory rather than specifying a distribu-

tion F n(β) over Z instead speci�es Gn(x, β) a (conditional) distribution over Y . This

is assumed to have the measurability property that if g(y, x) is a measurable func-

tion then gY (x, β) ≡
´
g(y, x)dGn(x, β) is measurable. Then F n(β) is then de�ned

through the conditional expectation as the unique measure satisfying

ˆ
g(y, x)dF n(β) =

ˆ
gY (x, β)dF̃ n

X .

In particular the probability F n(β) assigns to a measurable set is uniquely de�ned by

the expectation of the indicator function of that set.

The next Proposition shows that uniform convergence of continuous Gn to G

together with F̃ n
X → F̃X implies uniform convergence of F n to F which is what is

required in the de�nition of approximation. First, a Lemma showing that uniform

convergence of Gn implies uniform convergence of gnY

Lemma 7.3. Suppose (xn, βn) → (x, β) and Gn(xn, βn) → G(x, β). If g(y, x) is

continuous then gnY (xn, βn)→ gY (x, β), and gY is continuous.
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Proof. Suppose that g(y, x) is continuous. Then

gnY (xn, βn) =

ˆ
g(y, xn)dGn(xn, βn)

=

ˆ
g(y, x)dGn(xn, βn) +

ˆ
(g(y, xn)− g(y, x)) dGn(xn, βn)

The �rst term converges to gY (x, β) because Gn(xn, βn) → G(x, β) while the sec-

ond term converges to zero since the continuity of g implies that g(·, xn) converges

uniformly to g(·, x).

Continuity of gY (x, y) follows by applying the �rst result to the sequence Gn =

G.

Proposition 7.4. Suppose that Gn(x, β) is continuous, that F̃ n
X → F̃X , and for all

(xn, βn) → (x, β) it is the case that Gn(xn, βn) → G(x, β). Then F n(βn) → F (β)

where
´
g(y, x)dF (β) =

´
gY (x, β)dF̃X(x).

Proof. Suppose g(y, x) is continuous. Then

ˆ
g(y, x)dF n(βn) =

ˆ
gnY (x, βn)dF̃ n

X

=

ˆ
gY (x, β)dF̃ n

X +

ˆ
(gnY (x, βn)− gY (x, β)) dF̃ n

X .

The �rst term converges to
´

(g(y, x)dF (β) because gY (x, β) is continuous and F̃ n
X →

F̃X . The second term converges to zero because from Lemma 7.3 gnY (·, βn) converges

uniformly to gY (·, β).

The generalized and ordinary methods of moments are unchanged and Theorem

5.4 remains true.
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