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Abstract

The in�nitely repeated prisoner's dilemma game provides a paradigm for long-term

cooperation in the face of short-term incentives for free riding. However, the extent

to which players cooperate in long-term play in repeated inde�nite horizon prisoner's

dilemma games in the laboratory depends on the speci�c payo� parameters of the

game. Attempts to explain this have employed a variety of ad hoc models of individual

learning. Here I take the simpler more direct approach of behavioral mechanism

design. I hypothesize that there ethical players who actively seek to maximize social

welfare and that players tremble. I use a simple benchmark calibration that uses no

data from strategic experiments and which is consistent with data from a variety of

one-shot games. I show that this simple calibrated model makes sharp predictions

and does a good job both qualitatively and quantitatively in explaining experimental

data in repeated inde�nite horizon prisoner's dilemma games.
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1. Introduction

The in�nitely repeated prisoner's dilemma game provides a paradigm for long-term

cooperation in the face of short-term incentives for free riding. Such an environment

is induced in the laboratory by ending the game with a role of the dice. In a repeated

inde�nite horizon prisoner's dilemma game, players are then rematched with new

opponents to play another inde�nite horizon prisoner's dilemma game. This enables

us to see in the laboratory the long-term play of experienced players - the type of

play that is most relevant in most applications outside the laboratory.

Theoretically, when the discount factor is su�ciently high, on account of the folk

theorem of Fudenberg and Maskin (1986), any degree of cooperation is possible in

equilibrium. However, game theorists have long believed, or at least hoped, that

players will �nd their way to cooperative equilibria. This hope has proven false in

experimental studies such as Dal Bo (2005) and Dal Bo and Frechette (2011).

In order to explain how the degree of long-term cooperation depends on the spe-

ci�c payo� parameters of the game researchers, such as Dal Bo and Frechette (2011),

Blonski, Ockenfels and Spagnolo (2011), Blonski and Spagnolo (2015) and Fuden-

berg and Rehbinder (2024), have employed a variety of ad hoc models of individual

learning. Here I take the simpler more direct approach of behavioral mechanism de-

sign. I hypothesize that there ethical players who actively seek to maximize social

welfare and that players tremble. I show that this theory does a good job of ex-

plaining both qualitatively and quantitatively long-term play in repeated inde�nite

horizon prisoner's dilemma games.

Behavioral mechanism design draws on two facts about behavior in the experimen-

tal laboratory. First, many participants in laboratory experiments strive to achieve

a social objective: this is the basis of much work on psychological theories beginning

with Levine (1986) and Fehr and Schmidt (1999). Second, participants are sometimes

inattentive or follow other objectives than utility maximization: the success of the

quantal response model of McKelvey and Palfrey (1995) in explaining experimental

data is due to the prevalence of such trembling behavior. The goal of this paper is to

show that a systematic combination of social goals with trembling can explain levels

of cooperation in repeated prisoner's dilemma experiments.

This paper builds on earlier work in Levine (2024). That paper developed a

simple benchmark model of behavioral mechanism design. It showed that, when this

model is calibrated to data on play in non-strategic settings, the model successfully
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predicts out-of-sample welfare for a variety of one-shot games. These games include

stag hunt, ultimatum bargaining, and public goods games with punishment. Here I

use this same calibration to predict welfare and cooperation in the repeated inde�nite

horizon prisoner's dilemma experiments of Dal Bo and Frechette (2011).

As indicated, in behavioral mechanism design, players are assumed to tremble. As

in Levine (2024) there is a 1/3rd chance that the a player trembles by playing uni-

formly with equal chance of cooperating or defecting. An inde�nite horizon prisoner's

dilemma game is then one of imperfect public signals and I study the strongly sym-

metric equilibria of Abreu, Pearce and Stacchetti (1986). Following Levine (2024) I

look for the welfare maximum among these equilibria.

I apply this benchmark calibration to study long-run behavior in the six repeated

prisoner's dilemma treatments of Dal Bo and Frechette (2011). In �ve of the six

treatments the benchmark calibration predicts welfare to within a single penny. In

the sixth the calibration fails.

I then study the anomalous sixth case. While other theories do not provide a

correct qualitative prediction of welfare either, one learning based theory does provide

a correct qualitative prediction about cooperation rates. With this in mind I propose

that in the anomalous sixth treatment it is di�cult for sel�sh players to learn the

mechanism the ethical players are trying to teach them. Instead, the ethical players

provide a second best mechanism in which they provide incentives only for each

other. This predicts welfare in the anomalous sixth case to within a penny. I con�rm

this theory with an out of sample study of a public goods contribution game with

punishment.

2. The Experimental Game

The experimental game and data are from Dal Bo and Frechette (2011). A

population of players is randomly matched to play a repeated prisoner's dilemma

game with probability δ ∈ {1/2, 3/4} of continuing each period. Payo�s in pennies

are given by U ∈ {32, 40, 48} and the payo� matrix in Table 2.1 below.

C D

C U,U 12, 50
D 50, 12 25, 25

Table 2.1: Prisoner's Dilemma Payo�s
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3. The Benchmark Model

Denote the pure strategies in the repeated game for player i ∈ {1, 2} by si ∈ S
and mixed strategies by σi. Players are risk neutral. In each period player i has a

2/3rd chance of playing according to their intended strategy σi and a 1/3rd chance of

trembling according to an iid uniform random variable. The solution concept is the

strongly symmetric equilibrium that maximizes ex ante social welfare. This requires

that players always intend to take the same action as each other and that the signals

DC and CD are punished in the same way.

Related Literature

The analysis here is closely related to that in Levine (2024). There are four

di�erences.

First, players here �tremble� rather than draw �noise types.� As shown in the

earlier paper this does not matter.

Second, in Levine (2024), there were ethical players who were willing to sacri�ce

an amount γ (their largesse) for the common good. As the dollar equivalent of γ is

$1.00/T where T ≈ 160 is the number of times a player gets to play over the course

of the experiment it is reasonable to ignore this in studying the Dal Bo and Frechette

(2011) data. Moreover, when cooperation is supported as a strongly symmetric equi-

librium largesse can play no role: when both players are cooperating an ethical player

can do no more, and the punishment equilibrium is calibrated to be as generous as

possible consistent with incentive compatibility for the sel�sh agents. Any e�ort by

ethical players to improve on the punishment equilibrium will undermine the entire

equilibrium. However, under certain circumstances, the largesse of the ethical play-

ers in the form of γ can play a role in promoting cooperation: how and why this is

examined at the end of the paper.

Third, risk aversion is ignored, as the stakes are, as shown in the earlier paper,

too small for it to play a signi�cant role.

Finally, attention is restricted to strongly symmetric equilibria an assumption that

has no analog in the earlier calibrations. It is chosen because it is the only tractible

case, and it is unlikely that even in 40 to 80 attempts players in the laboratory could

realistically hope to discover, learn, and teach each other a mechanism that relies on

asymmetric punishments based on scoring schemes. Moreover, the advantage of such

schemes with these relatively low discount factors is not great. Readers interested in
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learning about other types of equilibria are referred to Fudenberg, Levine and Maskin

(1994), Mailath and Samuelson (2006) and Sannikov (2007).

Payo�s with Trembles

The general form of the payo� matrix with trembles is below in Table 3.1 and the

speci�c matrices corresponding to the di�erent games are Table 3.2

C D

C u, u n− `, u+ g
D u+ g,n− ` n, n

Table 3.1: Prisoner's Dilemma Perturbed Payo�s General From

C D

C 32, 32 18, 43
D 43,18 27, 27

C D

C 37, 37 19, 44
D 44,19 27, 27

C D

C 43, 43 20, 45
D 45,20 27, 27

Table 3.2: Prisoner's Dilemma Perturbed Payo�s: U = 32, 40, 48

Strongly Symmetric Equilibrium

I now solve to �nd the best strongly symmetric equilibrium. It is convenient to

de�ne the probability of a deviation due to trembling as π = 1/6. Strongly symmetric

equilibrium makes use of three signals: CC, DD and DC/CD. If the actual play is

CC the probability of the DD signal is pDD = π2 and the probability of the DC/CD

signal is pDC = 2π(1− π). Similarly if actual play is DC the probability of the DD

signal is qDD = (1− π)π and the DC/CD signal is qDC = (1− π)2 + π2.

The equilibrium is de�ned by the punishment issued for the �bad� signals DD

and DC/CD and the equilibrium average present value. Denote by PDD the average

present value punishment for DD and PDC that for DC/CD signal. Equilibrium

average present value is denoted by v.

The average present value v in the best strongly symmetric that supports cooper-

ation is characterized by solving the LP problem of choosing v, PDD, PDC to maximize

v subject to the two incentive constraints

v = (1− δ)u+ δ((1− pDD − pDC)v + pDD(v − PDD) + pDC(v − PDC))
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v = (1− δ)(u+ g) + δ((1− qDD − qDC)v + qDD(v − PDD) + qDC(v − PDC))

and the feasibility constraints v − PDD, v − PDC ≥ n and PDD, PDC ≥ 0. Note that

because δ ≥ 1/2 and there are two states there is no need for a public randomiz-

ing device: any feasible punishment can be attained by a deterministic (intended)

sequence of play by the two players.

De�ne the relative gain to cooperation

R ≡ u− n
g

the interest rate

ρ ≡ 1− δ
δ

and the noisy interest rates

ηDD ≡
ρ+ pDD
qDD − pDD

, ηA ≡
ρ+ pDD + pDC

(qDD + qDC)− (pDD + pDC)
.

.

The LP problem is solved in Appendix I. The solution is given by

Proposition 3.1. If ηA ≤ R < ηDD and qDC − ((1 + ηDD)/ηDD)pDC ≤ 0 the solution

is the the static Nash equilibrium PDC = PDD = 0 and v = n. Otherwise it is given

below

PDC v PDD

R < ηA 0 n 0

ηA ≤ R < ηDD ρ
(

1−ηDDR
qDC−pDC−ηDDpDD

)
g u−

(
pDD(u−n)+pDCPDC

ρ+pDD

)
v − n

R ≥ ηDD 0 u−
(

pDD

qDD−pDD

)
g

(
ρ

qDD−pDD

)
g

Table 3.3: Best Strongly Symmetric Equilibrium

Note that the columns are ordered so that the solutions in each column depend

only on the results from the previous columns.

To gain a little intuition, observe that the e�ciency of using a signal K ∈
{DD,DC} for punishment is measured by (qK − pK)/pK . This is greatest for DD

so this signal should be used until the constraint binds. In the intermediate case



7

ηA ≤ R < ηDD this constraint does bind so it is necessary also to punish on the less

e�cient signal DC.

4. Theory vs. Data

From the theory the best equilibrium average present value expected utility (wel-

fare) can be computed. Below in Table 4.1 this is reported in cents along with the

actual average present value welfare for all matches starting with the tenth. Note

that starting with the tenth match is to assure that the players are experienced and

is consistent with past practice including Levine (2024). The RD column is discussed

subsequently.

δ
U

32 40 48
theory data RD theory data RD theory data RD

1/2 26.9 25.9 25 27.1 27.1 25 41.6 30.9 48
3/4 26.9 27.2 25 33.5 34.2 40 42.0 43.0 48

Table 4.1: Welfare

Note that when δ = 3/4, U = 40 the CC strategy yields u = 37.1 so that the loss

from punishment in that case is non-trivial. By contrast when δ = 3/4, U = 48 the

CC strategy yields u = 42.6 so that the loss from punishment is small.

The bottom line here is that in �ve out of six cases the theory does extremely

well predicting welfare (within one cent). Moreover it gets a key and non-trivial

comparative static prediction right: it predicts that when δ = 3/4 increasing U from

40 to 48 should increase welfare by 8.5 while the actual increase is 8.8.

There is one glaring anomaly: δ = 1/2, U = 48 where according to the benchmark

players should have been able to �nd an equilibrium earning more than ten cents

greater than they actually got. Notice that they played around 160 times so over the

entire session this is a substantial amount of money. Notice, moreover, that players

have not simply reverted to static Nash equilibrium with noise: that payo� is 27.3,

which, although a more accurate prediction of welfare than the benchmark, is not

particularly close.

Risk Dominance

The best subgame perfect equilibrium (in the usual sense) in all the games except

for δ = 1/2, U = 32 has all players cooperating on the equilibrium path. This theory



8

does not do well and as an alternative risk dominance was introduced by Blonski and

Spagnolo (2015) and was also used by Dal Bo and Frechette (2011). It is assumed

that players consider only two strategies: always defect or grim-trigger. Grim trigger

cooperates in the �rst period and cooperates if both players cooperated last period,

otherwise defects. The best response against a population playing these two strategies

with equal probability is called risk dominant. The RD column in Table 4.1 shows the

conclusions of that theory: it does better than the best subgame perfect equilibrium

but does not do particularly well.

The concept of risk dominance has been weakened to propose measures of risk

dominance and hypothesize that higher values of this measure result in a better

outcomes. Two such measures have been proposed: the basin β and a discount factor

based cuto� ∆RD. To de�ne these denote the static Nash utility as N = 25, the gain

to defecting against cooperation as G = 50 − U and the loss to cooperating against

defect as L = 13.

The basin is de�ned by

β =
(1− δ)G− δ(U −N)

(1− δ)(G− L)− δ(U −N)
.

It measures the share of always defect players in the population that makes a player

indi�erent between always defect and grim trigger. Hence the criterion for risk domi-

nance is β > 1/2. This measure was introduced by Dal Bo and Frechette (2011) and

was also used in Fudenberg and Rehbinder (2024).

The discount factor cuto� is de�ned by

∆RD = δ − G+ L

U −N +G+ L
.

It measures the di�erence between the discount factor and the discount factor that

makes a player indi�erent between always defect and grim trigger when the facing a

population with equal probability of playing the two strategies. Hence the criterion

for risk dominance is ∆RD > 0. This measure was introduced by Blonski, Ockenfels

and Spagnolo (2011) who suggest it is a empirically better than the basin. It was

also used used by Fudenberg and Rehbinder (2024) to explain learning about �rst

period play. They indicate it does indeed work better than the basin of attraction β.



9

Relative Welfare

To measure the quality of an outcome observe that welfare levels di�er between

games because of changes in behavior but also because of changes in payo�s: cooper-

ation is much less valuable when U = 32 than when U = 48, for example. Hence to

examine qualitative theories it makes sense to introduce a measure of relative welfare:

the increase in welfare achieved divided by the greatest possible such increase. If w

denotes welfare, then relative welfare is α ≡ (w −N)/(U −N). The empirical value

of this quantity for all matches starting with the tenth is denoted by α̂.

Table 4.2 below summarizes the situation where the α column is the computed

for the benchmark behavior mechanism design analysis. Negative values of ∆RD or

1/2− β imply always defect is risk dominant and conversely.

δ
U = 32

∆RD 1/2− β α theory α̂ data
1/2 −0.32 −0.50 0.27 0.13
3/4 −0.07 −0.31 0.27 0.31

δ
U = 40

∆RD 1/2− β α theory α̂ data
1/2 −0.11 −0.22 0.14 0.14
3/4 0.14 0.23 0.57 0.61

δ
U = 48

∆RD 1/2− β α theory α̂ data
1/2 0.11 0.12 0.72 0.26

3/4 0.36 0.34 0.74 0.79

Table 4.2: Relative Welfare

From the perspective of relative welfare the benchmark theory does slightly worse

than it does for absolute welfare: for the δ = 1/2, U = 32 game it gets a value of

α = 0.27 that is much larger than the empirical relative welfare of ˆα =0.13. There

is not much reason for concern over this: players only lose a penny compared to the

best mechanism and few mechanism designers would be concerned with improving a

mechanism to squeeze out an extra penny.

The basin theory, as indicated in Fudenberg and Rehbinder (2024), does slightly

worse than ∆RD : it suggests that α̂ should be smaller at δ = 3/4, U = 32 than at δ =

1/2, U = 40 and it is not. All three theories also have an anomaly at δ = 1/2, U = 48.

The bold highlighting shows why: both qualitative theories and mechanism design
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agree that α should be higher in the anomalous case when δ = 1/2, U = 48 than

when δ = 3/4, U = 32. It is not.

Cooperation Rate

While relative welfare α is a measure of �the quality of the outcome� it is not the

only one: a more traditional measure is the cooperation rate ϕ. This di�ers from

relative welfare in the way that o� diagonal outcomes DC/CD are scored. Both

measures agree that DD counts 0 and CC counts 1, but the cooperation rate scores

DC/CD as 0.5 while relative welfare scores it as 0.86, 0.33 or 0.26 respectively for

the three payo� matrices. The cooperation rate is not clearly a superior measure: it

scores �fty-�fty between CC and DD the same as �fty-�fty between DC and CD

although most would agree that these are rather di�erent outcomes.

Cooperation rates are reported below in Table 4.3. The value ϕ is computed from

the benchmark behavioral mechanism design model while ϕ̂ is the data from the tenth

and subsequent rounds. All six treatments are reported along with the corresponding

∆RD.

With respect to the cooperation rate the basin and ∆RD do not su�er a qualitative

anomaly between δ = 3/4, U = 32 (∆RD = −0.07) and δ = 1/2, U = 48 (∆RD =

0.11). The reason for this is that while the former has a higher relative welfare of

0.31 than the latter's of 0.26 it has a lower cooperation rate of 0.21 than the latters

0.34. The reason for the discrepency is that from a welfare point of view DC/CD

are almost as good as CC when U = 32, while when U = 48 the outcomes DC/CD

are not all that much better than DD.

The second anomaly involving the basin remains: while the cooperation rate

should be smaller at δ = 3/4, U = 32 than at δ = 1/2, U = 40 in fact it is 0.21

at the former but only 0.17 at the latter.

With respect to cooperation rates ∆RD is qualitatively correct in all cases as shown

below in Table 4.3.

∆RD −0.32 −0.11 −0.07 0.11 0.14 0.36
ϕ̂ 0.08 0.17 0.21 0.35 0.65 0.83
ϕ 0.17 0.17 0.17 0.79 0.60 0.81

Table 4.3: Cooperation Rates

The bottom line is that there is a theory, ∆RD, and there is a measure of behavior,

ϕ̂, which for which the qualitative predictions of the theory about behavior are correct
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while the benchmark theory fails qualitatively (by any measure) to predict what

happens at δ = 1/2, U = 48.

5. Ad Hoc Learning

Risk dominance is derived from evolutionary game theory, such as Kandori, Mailath

and Rob (1993) and Young (1993), which suggests that in 2×2 games risk dominant

outcomes should be observed in the long-run. Fudenberg and Rehbinder (2024)'s

simulation study of a simple learning procedures shows that risk dominance measures

such as ∆RD are useful in predicting initial round cooperation in the long-run. How-

ever, the restriction to two strategies, always defect and strong-grim-trigger, is not

innocuous.

To see the issue, consider the anti-grim-trigger strategy of defecting in the �rst

period and defecting forever if any player cooperated in the �rst period, otherwise

cooperating forever. Here is the point: in a population with equal fractions of all three

strategies regardless of the discount factor always defect is the strict best response.

The idea is that always defect does better against anti-grim-trigger than grim-trigger

does against itself. Indeed, in any population where there are at least as many anti-

grim-trigger as grim trigger always defect is the strict best response. More broadly,

it is well known in the literature that evolution and learning theory is fraught when a

broad range of strategies including strategies like anti-grim-trigger are allowed. One

example is Johnson, Levine and Pesendorfer (2001) who study a simpler setting of a

gift giving game.

One argument that can be used against anti-grim-trigger is that it is weakly

dominated by always defect. Empirically, however, in the �rst match of a one-shot

repeated prisoner's dilemma Dal Bo (2005) observes more than 25% of the population

are playing the strictly dominated strategy of cooperating. This makes it hard to

argue that players will not use weakly dominated strategies.

Consider, by contrast, the behavioral mechanism design approach. Here it is

supposed that ethical players understand that they must create incentives for others

to get a good outcome. Naturally they focus on strategies such as grim-trigger that

provide incentives. Unless they are awfully clever, they cannot be sure what the right

incentives are, or even if adequate incentives can be provided: this they must learn. In

this sense behavioral mechanism design and learning theory are complements rather

than substitutes.
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It is doubtful that many real players in real laboratories consider or use strategies

such as anti-grim-trigger. From the perspective of mechanism design it makes little

sense as it is not part of a welfare maximizing mechanism. While ethical players might

be unsure how much to punish and whether it will work, it is unlikely they spend a lot

of time experimenting with strategies that fail obvious tests of contributing to the goal

of achieving high welfare. In other words, the behavioral mechanism design approach

provides a rationale for limiting strategic options. On the other hand, learning theory

may explain why best mechanisms may not be observed: it may be to hard for the

ethical players to teach the sel�sh players.

Learning

Consider �rst what is known about learning, Figure 5.1 is reproduced from Fuden-

berg and Rehbinder (2024). As indicated, they use a simple learning model to predict

�rst period cooperation over repeated inde�nite horizon prisoner's dilemma games for

a large data set that includes Dal Bo and Frechette (2011). What is striking is that

for 0.00 < ∆RD < 0.15, despite the fact that good mechanisms with high cooperation

are available, players seem to have no success in �nding them. Speci�cally, in the

range 0.00 < ∆RD ≤ 0.15 initial cooperation in the �rst supergame is a bit less than

0.6 and and it remains a bit less than 0.6 even in the 20th match.

Figure 5.1: Learning: solid line is data

The next question is: what sort of mechanism would be consistent with the type

of behavior seen when δ = 1/2, U = 48 where some incentives are provided, but not

�enough?� The ∆RD cuto� presumes that some players are always defecting while
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others provide incentives, and this appears to be what happens in the intermediate

range. From Table 4.3 there is a sharp discontinuity between ∆RD = 0.11 and ∆RD =

0.14. From this a possible learning hypothesis is to choose a cuto� ∆
RD ∈ (0.11, 0.14)

and assume that for ∆RD ≤ ∆
RD

, in the long run players can at best attain only a

second best mechanism in which a substantial fraction always defect. Alternatively,

this can be framed in terms of the basin with a cuto� β ∈ (0.62, 0.73) with the

criterion β ≤ β.

The Second Best

In the calibration of Levine (2024) there are hypothesized to be equal numbers of

ethical players who actively strive to �nd a good mechanism and of sel�sh players who

simply are out for what they can get. Suppose that in the lower range ∆RD ≤ ∆
RD

the

sel�sh players are unable to learn about the incentives provided by the ethical players

so they intend to always defect. In other words, suppose that in an ad hoc way the

theory is modi�ed to say that for ∆RD ≤ ∆
RD

what is observed is the best mechanism

subject to the constraint that half the players intend to always defect. Note that when

optimal incentives are provided players are in fact indi�erent between always defect

and following the equilibrium strategy so there is no loss to sel�sh players in playing

always defect.

To minimize the departure from the base model I assume that although a player

knows their own type before deciding how to play, types are independently redrawn

each period. This makes it possible to continue to use strongly symmetric equilibrium.

An alternative model would assume that types are persistent. In this case, in repeated

play, ethical types will update their beliefs about facing a sel�sh type and there will

be a semi-separating equilibrium. In Appendix II I show this does not make much

di�erence.

Below in Table 5.1 theoretical welfare is recomputed using the ad hoc model.

δ
U

32 40 48
theory data theory data theory data

1/2 26.9 25.9 27.1 27.1 31.7 30.9
3/4 26.9 27.2 33.5 34.2 42.0 43.0

Table 5.1: Ad Hoc Welfare

The only game in which ∆RD ≤ ∆
RD

and a non-trivial mechanism is feasible is
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the anomolous δ = 1/2, U = 48 game highlighted in bold: the remaining numbers

do not change. The results are fairly striking: the ad hoc 50 − 50 hypothesis for

∆RD ≤ ∆
RD

predicts welfare to within a cent in every case.

Largesse

As indicated above, in Levine (2024) the population of ethical players has largesse

equal to about $1.00/160 per round. This is too small to make much di�erence to

the static Nash equilibrium (with trembles) and cannot make a di�erence when the

ethical players are providing incentives to the sel�sh players. For this reason I have

so far ignored it. However, it could make di�erence if the ethical players provide

incentives only to each other: the punishment need not be so great as ethical players

do not feel the need to deviate if the gain is less than their largesse.

Speci�cally, with largess γ = 1.00 and T = 160 rounds, the second incentive

constraint becomes

v + γ/T = (1− δ)(u+ g) + δ((1− qDD − qDC)v + qDD(v − PDD) + qDC(v − PDC))

which is the same as reducing g by γ/(T (1− δ)),
To see the e�ect of largesse I recomputed the ad hoc welfare in Table 5.2 below.

Note that welfare accounts for the fact that the sel�sh players do a bit better (γ/T )

than the ethical players.

For the δ = 1/2, U = 48 game largesse makes little di�erence: welfare increases

only slightly from 31.7 to 32.3. The interesting thing that emerges is that while the

�full monte� solution is infeasible when δ = 1/2, U = 40 the �half monte� solution of

letting the sel�sh players defect is. (Without largesse the �half monte� solution is not

feasible.) While this may seem a bit puzzling, bear in mind that with U = 40 the

gain to deviating is reduced by having many defections. This makes it a bit easier to

sustain cooperation among the ethical players.

δ
U

32 40 48
theory data theory data theory data

1/2 26.9 25.9 28.3 27.1 32.3 30.9
3/4 26.9 27.2 33.5 34.2 42.0 43.0

Table 5.2: Ad Hoc Welfare with Largesse
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In all cases the theory remains within a cent and a half of the data.

6. Retrospective Study of a Public Goods Game With Punishment

The theory that for ∆RD ≤ ∆
RD

or β ≤ β the ethical players cannot teach

incentives to the sel�sh players and so can only provide incentives to each other is

ad hoc in the sense that it is invented after discovering an anomaly in the data. To

validate the theory it would have to make predictions for other games on which the

theory was not based. In fourteen treatments involving experienced players Levine

(2024) found one important anomaly. Can the teaching/learning theory explain that?

The Game

The anomaly occurs in a game studied by Nikiforakis and Normann (2008). This

is a public good contribution game in which players have the opportunity to punish

one another and in which the cost of punishment is varied. Speci�cally the game has

two stages. In the �rst stage money payo�s are given by

mi(1) = 1.50− qi + 0.4
n∑
j=1

qj

where qi ∈ {0, 0.075, 0.150, . . . , 1.50} and n = 4. There is a punishment factor λ ∈
{0, 1, . . . , 4} and if λ > 0 there is a second stage

mi(2) = mi(1)−
∑
j 6=i

pij − λ
∑
j 6=i

pji

where pij ∈ {0, 0.075, 0.150, . . .} is a punishment assigned by player i to player j.

There is also a constraint on individual punishment
∑

j 6=i p
ij ≤ mi(1).

The Anomaly

Table 6.1 below summarizes the anomaly. The theory column is welfare predicted

by the benchmark theory, the second best is predicted by the �second best� learning

theory described below, the �se� is the standard error due to sampling, and the �jungle�

column is welfare when no incentives are provided.
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λ
welfare

theory second best data se jungle

2 1.88 1.88 1.78 0.10 1.67
1 1.80 1.67 1.64 0.07 1.67

Table 6.1: Public Goods Contribution with Punishment

As highlighted in bold, for punishment factor λ = 1 the theory predicts that

players should get substantially more than they actually get. By contrast actual

welfare is much higher when the punishment factor λ = 2 and the di�erence with the

theoretical prediction may well be due to sampling error.

Risk Dominance

Note that ∆RE is speci�c to a repeated game with discounting and has no analog

here, so I focus on β ≤ β where recall that β ∈ (0.62, 0.73). What is the analog of β

for λ ∈ {1, 2} and is it smaller than β for λ = 1 and bigger for λ = 2? If so what is

predicted for λ = 1?

First let me indicate that in public goods with punishment games the �half monte�

solution is the same as the �law of the jungle� where no incentives are provided:

incentives that only get 1/3 the population to increase their contributions are too

welfare costly. Hence, as indicated in Table 6.1, the ad hoc teaching/learning theory

would predict that when λ = 1 welfare should be 1.67, quite close to actual welfare

of 1.64 and this would be scored as a success for the ad hoc theory.

To �gure risk dominance, I proceed by analog to the repeated prisoner's dilemma

game. Players contributing nothing to the public good can be regarded as �all defect.�

Contributing the maximum of $1.50 with maximum punishment for doing less can be

regarded as �grim trigger.� The former is subgame perfect. The latter is not, but it is

Nash. The idea then is to compute for each λ compute the basin β which is fraction

of �all defect� which leads to indi�erence between �all defect� and contributing $1.50.

Note that the players who are being �persuaded� to contribute by the ethical players

are sel�sh players who will not punish, that is, they �nd it a best response not to

play �grim trigger� but to play �always cooperate.�

Finding the Basin

For each β a player faces three opponents who are either playing �all defect�

or �grim trigger.� The probability of each combination is shown below in Table



17

6.2. Denote by Π the maximum punishment that can be sent by all �grim trigger�

opponents divided by the number of �all defect� plus one: this is also shown below in

Table 6.2.

�all defect� �grim trigger� probability Π

3 0 β3 0
2 1 3β2(1− β) 0.2
1 2 2β(1− β)2 0.6
0 3 (1− β)3 5.4

Table 6.2: Player Matching

Construct P (β) the probability weighted average of these punishments and let

Q(β) be the expected contribution of the opponents. A player who plays �all defect�

against such a population gets utility 1.50 − λP (β) + 0.4Q(β), while a player who

contributes 1.50 and does not punish gets 0.4(Q(β) + 1.50). Hence the basin is given

by solving λP (β) = 0.90. The solution for λ = 1 is β = 0.57 and for λ = 2 it is

β = 0.71. This gives the range that separates λ = 1 from λ = 2 as β ∈ (0.57, 0.71).

The corresponding range for the repeated PD was β ∈ (0.62, 0.73). Hence the range

β ∈ (0.62, 0.71) is thus consistent with both public goods with punishment and the

repeated prisoner's dilemma.

7. Conclusion

There are very few benchmark models that yield predictions about experimental

outcomes based only on the experimental instructions. Subgame perfect Nash equi-

librium with risk-neutral sel�sh players is one such, but is known to do a poor job

in many circumstances. It is rather a low bar these days to conduct an experiment

and �nd that it is not explained well by Nash equilibrium. In Levine (2024) I pro-

posed an alternative benchmark theory that is behavioral having both ethical and

noisy players. This yielded few anomalies when applied to a number of treatments

of stag-hunt, ultimatum bargaining, and public goods contribution games with and

without punishment.

If the benchmark is to be truly useful it must apply broadly. One particularly

demanding study is that of repeated games. In a sense this is a natural setting to

think of players acting as mechanism designers since the data suggests that players

are struggling to �nd good solutions, but sometimes fail to do so. Can the benchmark
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theory explain their successes and failures? In �ve out of six treatments it does exactly

that. In the sixth treatment it does not. Further examination of this anomaly suggests

that this may be due to di�cult in learning and a simple, but ad hoc, adjustment of

the theory accounts well for the anomalous case. A retrospective study of an anomaly

in a public goods game with punishment provides an out-of-sample con�rmation of

the ad hoc theory.

The learning idea is an important one. In the broad sample in Figure 5.1 it can be

seen that repeated prisoner's dilemma games with experienced players tend to fall into

three categories: high cooperation, low cooperation, and intermediate cooperation.

The �half monte� mechanism in which ethical players blow o� the sel�sh players and

provide incentives only for themselves captures this intermediate level of cooperation

(and in the anomalous case does so with high quantitative accuracy). As the analysis

of largesse shows, in some cases the �half monte� mechanism may be available even

if the �full monte� is not. In the anomalous case the �full monte� is available, but

learning models suggest that it is too di�cult to teach it to the sel�sh players. In

this sense the behavioral mechanism design approach and the learning approach may

be seen to be complementary. It also points the way towards hybrid theories, for

example, learning models in which players strategic options are limited to always

defect, the half monte mechanism and the full monte mechanism or in which they

adjust the punishment parameters of the mechanism.
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Appendix I: Solving the LP Problem

Observe that the LP problem makes players indi�erent between cooperating and

defecting. Hence they could mix: but doing so changes the incentive constraints

by worsening the signal, reducing the payo� to cooperating and for U ∈ {40, 48}
increasing the gain to defecting so can never be part of the best equilibrium. For

U = 32 to make sure that mixing did not make a cooperative equilibrium feasible the

incentive constraints were checked where the gain to defecting was computed under

the assumption that the opponent intended to defect, that is, is as small as possible.

Hence, the computations below are for pure strategy equilibria.

Recall that

v = (1− δ)u+ δ((1− pDD − pDC)v + pDD(v − PDD) + pDC(v − PDC))

and rewrite it as

ρ(u− v) = pDDPDD + pDCPDC .

Similarly the second incentive constraint can be rewritten as

ρ(u+ g − v) = qDDPDD + qDCPDC .

The two can be combined to give a second punishment constraint entirely in terms

of the punishments

ρg = (qDD − pDD)PDD + (qDC − pDC)PDC .

Maximizing v is the same as minimizing the aggregate on-path punishment cost

pDDPDD + pDCPDC subject to the punishment constraint. Equivalently QDD, QDC

can be chosen to minize

pDD
qDD − pDD

QDD +
pDC

qDC − pDC
QDC

subject to ρg = QDD +QDC . Hence the the maximum Q (and P ) should be allocated

to the smallest pK/(qK − pK).
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Computing the ratios for the two signals gives

pDD
qDD − pDD

=
1

1− 2π
π

pDC
qDC − pDC

=
1

1− 2π
π

2− 2π

1− 2π

so that DD is more e�cient.

Only DD Signal Used

If only DD is punished and the v − PDD ≥ n constraint does not bind, then the

two equality constraints can be solved to �nd

PDD = ρ
1

qDD − pDD
g

v = u− pDD
qDD − pDD

g.

Hence

v − PDD = u− pDD
qDD − pDD

g − P

= u− ρ+ pDD
qDD − pDD

g ≥ n

or
ρ+ pDD
qDD − pDD

≤ R. (7.1)

Both Signals Used

If inequality 7.1 fails then both signals must be used and PDD = v − n. The two
equalities are now

ρ(u− v) = pDD(v − n) + pDCPDC

ρg = (qDD − pDD)(v − n) + (qDC − pDC)PDC .

Notice that increasing PDC has two e�ects: it increases the punishment received when

DC/CD occur, but it also reduces v−n which is the punishment received when DD
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occurs. If qDC − pDC − qDD−pDD

ρ+pDD
pDC ≤ 0 the latter e�ect weakly dominates the �rst

so the only solution is that static Nash. Otherwise

PDC = ρg
1− qDD−pDD

ρ+pDD
R

qDC − pDC − qDD−pDD

ρ+pDD
pDC

v =
ρu+ pDDn

ρ+ pDD
− pDCPDC
ρ+ pDD

.

It remains to check that v − PDC ≥ n. This is

1

ρ+ pDD
(ρ(u− n) + pDCPDC) ≥ PDC

which can be written as

R ≥ ρ+ pDD + pDC
(qDD + qDC)− (pDD + pDC)

.

If this fails then the only strong symmetric equilibrium is the static Nash.
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Appendix II: Persistent Types

In the δ = 1/2, U = 48 game consider the �half monte� mechanism with persistent

types.

In the �rst round (Table 3.2) an ethical player gets an equally weighted average

of 43 and 20.

Ethical types cooperate in the �rst period and the sel�sh types defect and both

have the same probability of trembling. Hence if the opponent cooperates in the �rst

period the posterior probability of the opponent is ethical is 5/6, while if the opponent

defects it is 1/6.

To get an idea of what happens from the second round on take the extreme

assumption that the type is perfectly revealed after the �rst round. There is a 1/2

chance that the opponent is ethical, resulting in an average present value payo� of

41.6 (Table 4.1) and a 1/2 chance the opponent is sel�sh resulting in an average

expected present value payo� of 27 (Table 3.2). Taking expectations and present

value this yields 32.9.

Sel�sh players, not knowing they can do better, get less. With probability 1/2 in

the �rst period sel�sh players get 45, but in all other cases they get 27 giving 31.5

Averaging over the two types gives welfare as 32.2. With impersistent types this

number (Table 5.1) is 31.7, so the increase due to type persistence is not large.
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