
 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

Essays on Strategic Experimentation 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Economics 

 

by 

 

Kichool Park 

 

 

2001 



  





 iii 

 

 

    To My Parents 

 
 
 



 iv 

Table of Contents 
 
 
 Page 

 
Acknowledgments vi 
Vita vii 
Abstract of the dissertation viii 

 
 
Chapter 1. Introduction  1 

Chapter 2. Robust Equilibria in Strategic Experimentation   

2.1  Introduction 6 

2.2  The Model 11 

2.3  Basic Results 12 

 2.3.1  The Filtering Problem 13 

 2.3.2  Properties of The Value Function 15 

2.4  The Team Problem 21 

2.5  The Leader-Follower Model of Strategic Experimentation 27 

 2.5.1  Non-Existence of a Symmetric Equilibrium 28 

 2.5.2  Simple Pure Strategies and Simple Mixed Strategies 31 

 2.5.3  Uniqueness 38 

2.6  Robustness of SPS Equilibria 40 

2.7  The Value Functions at SPS Equilibria  53 

2.7  Existence of an SPS Equilibrium 60 

 

Chapter 3. Experimentation in Markets   

3.1  Introduction  65 



 v 

 Page 
 

3.2  A Continuous-Time Market Game  

 3.2.1  The Model 67 

 3.2.2  Beliefs, Strategies, and Equilibrium 69 

 3.2.3  Hamilton-Jacobi-Bellman Equations 71 

3.3  Efficient Allocation 72 

3.4  Symmetric Equilibria 74 

 3.4.1  Equilibrium Prices 75 

 3.4.2  Efficiency 76 

 3.4.3  Comments on Bergemann and Välimäki (2000) 80 

3.5  Linear Prices 82 

3.6  Heterogeneous Buyers 86 

 

Chapter 4. Existence of Pure Markov Strategy Equilibria in Discrete-

Time Multi-Player Multi-Armed Bandit Problems  

 

 

4.1  Introduction 91 

4.2  General Setting 93 

4.3  Best Responses 97 

4.4  Value Functions 100 

4.5  Existence of Pure Markov Strategy Equilibria 104 

 

Chapter 5. Conclusion 109 

 

REFERENCES 111 

 
  
 



 vi 

ACKNOWLEDGMENTS 
 

  

I would like to thank my dissertation committee members for all of their 

helpful comments. Amongst them, David Levine, Joe Ostroy, and Bill Zame need 

special mentioning. Their influences on me at the early stage of developing as a 

theorist are tremendous. Not only from the classes they taught, but also from 

numerous conversations out of the classroom, I benefited enormously, and I am 

very grateful. I thank Hongbin Cai, John Riley, Peter Sorensen, and seminar 

participants at University of Arizona, Southern California Theory Meeting at Santa 

Barbara, The First World Congress of Game Theory at Bilbao, Theory Workshop 

of Korean Econometric Society at Seoul for their valuable comments on Chapter 2. 

Dirk Vergemann and Juuso Välimäki commented in detail on Chapter 3, which is 

gratefully acknowledged. I owe a particular debt to my advisor David Levine. 

Without his encouragement and advice for years, it would have been impossible for 

me to finish this work. 

Most of all, my deepest thanks go to my wife, Meekyoung Kim, and our two 

daughters, Hyunjee and Jaewoo, for their forbearance of those years they have lived 

apart from their husband and dad.  



 vii 

VITA 

 
July 29, 1968 Born, Sisan, Korea 

 
1992 B.A., Law 

Seoul National University 
Seoul, Korea 
 

1999 M.A., Economics 
University of California, Los Angeles 
 

1999 C.Phil., Economics 
University of California, Los Angeles 
 

1997-1999 Teaching Assistant 
Department of Economics 
University of California, Los Angeles 
 

2000 Medford Fellowship 
Department of Economics 
University of California 
 

2000-2001 Chancellor's Dissertation Year Fellowship 
University of California, Los Angeles 

 
 
 
 
 

PUBLICATIONS AND PRESENTATIONS 
 
 
Park, K. (March, 2000): Leader-Follower Model of Strategic Experimentation. 

Presented at Southern California Economic Theory Conference, Santa 
Barbara. 

 
 
Park, K. (July, 2000):  Two Player Continuous Time Bandit Problem. Presented at 

The First World Congress of Game Theory, Bilbao, Spain. 



 viii 

ABSTRACT OF THE DISSERTATION 

 

Essays on Strategic Experimentation 

 

by 

 

Kichool Park 

Doctor of Philosophy in Economics 

University of California, Los Angeles, 2001 

Professor David K. Levine, Chair 

 

 

 

  

This dissertation includes three essays on strategic experimentation. In Chapter 

2, we investigate a game of strategic experimentation that also appears in Bolton 

and Harris (1999). The setting is a two-player continuous-time two-armed bandit 

problem. We will show that there is no mixed strategy equilibrium and that there 

are only two asymmetric pure strategy equilibria, both of which are simple in 

nature. In so doing, it will be shown that this game is a kind of simple coordination 

game. We will also show that the asymmetric equilibria are robust for a wide range 



 ix 

of parameters against the perturbations in the noise structure. Based on this result, 

we argue that even in the symmetric game with a homogeneous noise structure, the 

focus of the analysis should be on the asymmetric equilibria, not on the symmetric 

equilibrium that was studied in Bolton and Harris (1999). 

In Chapter 3, we will investigate the possibility that the inefficiency in Chapter 

2 could be overcome by market competition. Two competing firms are now 

supplying the two options. It will be shown that results vary according to whether 

or not consumers are homogeneous. If all the consumers have the same abilities to 

evaluate the uncertain product, it is possible to achieve the efficient outcome. If the 

consumers have heterogeneous abilities, then it is impossible to achieve the 

efficient outcome.  

In Chapter 4, we turn to discrete-time models. Unlike continuous-time set up, 

we can provide a general model of multi-player multi-armed bandit problems in 

discrete-time set up. Under the assumption of perfect observability, we will 

generalize Section 2.2 in Berry and Fristedt (1985) to n player case. Then, we will 

show that there exist pure Markov strategy equilibria. 



Chapter 1

Introduction

In a standard undergraduate textbook of microeconomics, the only mention

of uncertainty is found in the chapter covering expected utility theory. Consumers

are assumed to know exactly how much utility they will get from the consumption

of each good. No matter how subtle the di¤erences among the goods we assume,

a consumer will understand them perfectly. Producers perceive market demands

exactly. We even take this a step forward in the theory of duopoly in which each

…rm is assumed to know the other …rm’s cost function as well.

In reality, however, almost nothing is known for sure. No …rm has perfect

knowledge of the market demand function. No consumer knows fully all the minute

di¤erences of di¤erentiated products in the market. This lack of full knowledge is

a fundamental aspect of human life.

1



What is perhaps more important, but often overlooked, is that we obtain

additional information almost every time we make an economic decision. A con-

sumer who buys an apple at a supermarket will get some information about the

taste of the speci…c kind of apple he decides to purchase. The owner of a gas

station will obtain information about the local market demand for gas as he posts

the price of gas each day. This newly acquired information will then have e¤ects

on the decisions of the consumer and of the owner of the gas station in the future.

If the taste of the apple was very bad, the consumer may decide not to purchase

that type of apple in the future. Depending on the sales record today, the owner

of the gas station may want to increase or decrease the gas price tomorrow. These

decisions, of course, may bring additional information which will in turn a¤ect

future decisions.

In some situations, people may act primarily to get information. If a con-

sumer …nds a new strain of apple in the supermarket, and if he never knew that

type of apple exists before he entered the supermarket, he may decide to purchase

it primarily to gain information about the new variety. At the cost of his favorite

apple from which he could expect to get certain amount of joy, he is going to

gather information about the new kind of apple. In other situations, the trade o¤

between the acquisition of information and the sacri…ce of the instant reward may

be less explicit and subtler. This trade o¤ between information and instant reward

2



is fundamental. Thus, in order to understand various economic phenomena better,

it is crucial to understand how a rational person experiments to get information.

Multi-armed bandit theory studies this issue in a most abstract form: Sup-

pose we ought to select sequentially one of k alternatives. If the payo¤s of those

k alternatives are known only probabilistically, then what would be an optimal

strategy to maximize the sum of the payo¤s?

Some immediate applications of bandit problems are simplest search prob-

lems. It is, however, not appropriate in general to attempt to apply the results

of bandit problems to economic analysis directly. In multi-armed bandit prob-

lems which are one person decision problems, the possibility of the existence of

other experimenters, which is a usual feature in economic problems, is ignored. If

there are other people, their experimentation may also provide opportunities to

get information. Except in the case of Robinson Crusoe on a deserted island, we

can always get some information which is relevant to our decisions by observing

others’ decisions and the results of those decisions. If the owner of the gas station

sees the owner of a nearby gas station post a higher price than his and observes

that the number of cars stopping by that station for fuel still does not decrease

and that the number of cars stopping by his station does not increase either, then

he would increase his price the next day. Even Robinson Crusoe can learn from

the experience of his cohabitant, Friday. Since experimentation is costly, people

3



will take advantage of the opportunity to observe others and to learn from their

experimentation so as to lower their own costs of experimentation at the expense

of others.

Analysis of equilibria in an environment in which experimentation decisions

are made strategically is new to economists, and there is not much research in

this area. The very …rst, and perhaps most challenging, question is how to keep

track of people’s beliefs as they are updated with newly acquired information.

The most general answer to this question, and hence, the full understanding of

the issue of strategic experimentation, are not yet obtained. Nevertheless, we will

keep collecting pebbles on the beach of this newly found ocean, and provide in this

dissertation some that we have found.

Outlines

In Chapter 2, we investigate a game of strategic experimentation that also

appears in Bolton and Harris (1999). The setting is a two-player continuous-

time two-armed bandit problem. We will show that there is no mixed strategy

equilibrium and that there are only two asymmetric pure strategy equilibria, both

of which are simple in nature. In so doing, it will be shown that this game is a

kind of simple coordination game. We will also show that the asymmetric equilibria

are robust for a wide range of parameters against the perturbations in the noise

4



structure. Based on this result, we argue that even in the symmetric game with a

homogeneous noise structure, the focus of the analysis should be on the asymmetric

equilibria, not on the symmetric equilibrium that was studied in Bolton and Harris

(1999).

In Chapter 3, we will investigate the possibility that the ine¢ciency in Chap-

ter 2 could be overcome by market competition. Two competing …rms are now

supplying the two options. It will be shown that results vary according to whether

or not consumers are homogeneous. If all the consumers have the same abilities

to evaluate the uncertain product, it is possible to achieve the e¢cient outcome.

If the consumers have heterogeneous abilities, then it is impossible to achieve the

e¢cient outcome.

In Chapter 4, we turn to discrete-time models. Unlike continuous-time set

up, we can provide a general model of multi-player multi-armed bandit problems

in discrete-time set up. Under the assumption of perfect observability, we will

generalize Section 2.2 in Berry and Fristedt (1985) to n player case. Then, we will

show that there exist pure Markov strategy equilibria.

5



Chapter 2

Robust Equilibria in Strate-
gic Experimentation

2.1 Introduction

In a recent paper analyzing strategic experimentation, Bolton and Harris

(1999) found a symmetric mixed strategy equilibrium and examined its properties.

However, it can be shown that their equilibrium is extremely fragile with respect

to perturbations in the noise structure. By contrast, the asymmetric equilibria

they did not analyze are robust to these perturbations. After characterizing all

equilibria in the two-player game, we will argue that the main focus of analysis

6



ought to be on asymmetric equilibria.

The game we consider is a variation of the two-player continuous-time bandit

problem. Each player should divide their time between two options; one of which

is “safe” and the other “risky.” If the safe option is chosen, the player will be

rewarded at a known rate. If the risky one is chosen, the player who chooses it

will obtain a payo¤ which is a sum of the reward from the unknown parameter

and noise. Thus, the reward rate for the risky option is unknown, which could

be higher or lower than that of the safe one, and it should be learned over time.

We assume that all the previous actions of each player and the realizations of the

noisy payo¤s are known to each player at all times. Therefore, each player will get

information about the unknown reward rate of the risky option not only from her

own experimentation, but also from that of the other player.

The main di¤erence between our model and that in Bolton and Harris (1999)

is in our assumption that the noise from the risky option could have di¤erent

variances across individuals. To be speci…c, without loss of generality, ¾2; the

variance of the noise added to the payo¤ from the risky option to player 2, will be

smaller than ¾1; the variance of the noise added to the payo¤ from the risky option

to player 1. This perturbed game will serve to test the robustness of equilibria of

the original game in Bolton and Harris (1999), where they assumed homogeneity

of the noise structure.

7



This model is important to understand, since a lot of situations …t the de-

scription of “strategic experimentation.” Examples include natural resource ex-

ploration, adoption of new institution, technologies, or products, research and de-

velopment, and consumer search. None of these examples will be as simple as our

model. Overall, however, we agree with Bolton and Harris (1999) that multi-agent

two-armed bandit problem will be the backbone of multi-agent active learning

theories. The depth of the current understanding of this problem, however, is not

satisfactory. Thus, as a way of attaining a better understanding, we con…ne our

focus to the 2 player case, and attempt to do full analysis. The basic results are

as follows.

We …rst show that in addition to the symmetric mixed strategy equilibria

Bolton and Harris (1999) investigated, the original game has two more equilibria,

which are asymmetric pure strategy equilibria. In every perturbed game, however,

there are only two asymmetric pure strategy equilibria. There is no mixed strategy

equilibrium in perturbed game. The structures of the asymmetric pure strategy

equilibria are very simple; either player 1 is experimenting more or player 2 is. To

explain this in more detail, let p be the posterior probability that the risky option

has a higher reward rate. Then, at one equilibrium, there will be two cuto¤ points

0 < c1 < c2 < 1 such that player 1 chooses the risky option if and only if p > c1

and player 2 chooses the risky one if and only if p > c2: At the other equilibrium,

8



there still are two cuto¤s 0 < c01 < c
0
2 < 1, but now, player 1 and 2 choose the risky

option if and only if p > c02 and p > c
0
1; respectively.

Moreover, by showing that the symmetric mixed strategy equilibrium disap-

pears as soon as we add heterogeneity into the structure of the noise, and that, by

contrast, the asymmetric pure strategy equilibria are robust against this pertur-

bations, we select the asymmetric pure strategy equilibria against the symmetric

mixed strategy equilibrium in the original game. More precisely, in all pure strat-

egy equilibria, the length of the interval of p on which only one of the players is

experimenting is shown to be bounded away from zero as ¾2 converges to ¾1:

Some features of these asymmetric equilibria are worth emphasizing. As

the experimentation of player 2 will provide more accurate information than that

of player 1 does, social optimality requires that player 2 should choose the risky

option in case only one of them experiments. There exists, however, an equilibrium

at which the player with noisier signal chooses the risky option earlier, which is

opposite to the e¢cient allocation. It will be shown that even the equilibrium

where player 2 begins to choose the risky option …rst is ine¢cient due to the free

riding incentives. At both asymmetric equilibria, players will cease to select the

risky option for some beliefs even though social optimality requires there to be

experimentation. Hence, we have too little experimentation for these beliefs, and

thus too little social learning. The ex ante probability of adopting the better

9



product is less than optimal.

Lastly, it will be shown that the perturbed game is a kind of coordination

game. Depending on which type of equilibria they are playing, the payo¤ to each

player will be determined accordingly. For example, if player 1 is doing more

experimentation and player 2 is free riding, then the payo¤ to player 2 is greater

than that of player 1.

This chapter is organized as follows. Section 2 describes the game. Section 3

summarizes the basic results that will be useful in later sections. All the results in

Section 3 are straightforward modi…cations of those in Bolton and Harris (1999).

The team problem is studied in Section 4. In Section 5, we show that the structure

of the equilibrium strategy pro…le in our model is fairly simple. We show this

in three steps. Firstly, it will be shown that there is no symmetric equilibrium.

Second, we prove a characterization lemma for mixed strategy equilibria. Lastly, by

showing that there is no mixed strategy equilibrium that satis…es this condition,

we show that the only possible equilibrium is a pure strategy equilibrium. In

Section 6, we provide one characterization theorem for pure strategy equilibria

pro…les, and with it, we show that asymmetric pure strategy equilibria are robust

to perturbations in ¾2; given ¾1. In Section 7, it is shown that the game we analyze

is simply a coordination game. The player engaged in less experimentation receives

a higher payo¤. The existence proof of asymmetric equilibria is given in Section 8.

10



2.2 The Model

There are 2 in…nitely lived, risk-neutral players who will be denoted by 1; 2.

At each time period [t; t+ dt), each player has to decide how to allocate her time

between two alternatives, one of which is safe and the other risky. Their choices

are made simultaneously and independently. For player i = 1; 2; if she devotes a

proportion of ®i of the current period [t; t+dt) to the risky option, she will receive

the total payo¤

d¼0i = (1¡ ®i)sdt+ (1¡ ®i)1=2¾dZ0i (t)

from the safe option, and the total payo¤

d¼1i = ®i¹dt+ ®i
1=2¾idZ

1
i (t)

from the risky option.

We assume that 1) s is known to both players, 2) neither of players knows ¹;

although the value of ¹ is …xed, 3) ¹ can be either h or l; where 0 < l < s < h; 4)

the dZki (t) are the independent standard Brownian motions for k 2 f0; 1g; i = 1; 2:

Thus, by choosing the risky option, each player could get information about ¹,

although this information is subject to noise.

Since the dZki (t) are standard Brownian motions, dZ
k
i (t) will be distributed

following normal distribution whose mean and variance are zero and dt; respec-

tively. This implies that d¼0i is distributed normally with mean (1 ¡ ®i)sdt and

variance (1 ¡ ®i)¾2dt; and that d¼1i is distributed with mean ®i¹dt and variance

11



®i¾
2
idt: Regarding the variances of the noise, we will assume that they will be

di¤erent across players. This assumption implies that the signals received by the

two players will di¤er in quality. Without loss of generality, we will assume that

0 < ¾2 < ¾1: The signal for player 2 will be less noisy. We could interpret this as-

sumption as each player having di¤erent technologies to evaluate the true value of

the risky option. All the players have the same objective: to maximize the present

discounted value of their payo¤ streams, namely E[
R1
0
re¡rt(d¼0i + d¼

1
i )(t)]; where

r is the common discount factor for the players. The meaning of this expectation

will be clearer in the next section.

We will assume that each player’s decision and her payo¤ in each period,

(®i(t); ¼
0
i (t); ¼

1
i (t))i=1;2 ;will be known to everyone at the beginning of the preceding

period. Thus, f(®i(t); ¼0i (t); ¼1i (t))i=1;2gt<~t are common knowledge to the players

at time ~t; for all ~t:

2.3 Basic Results1

Most of the results in this section are straightforward modi…cations of those

in Bolton and Harris(1999).

1 All the results in this section can be generalized in a straight forward way to the
game of N players, where 0 < ¾N < :::: < ¾1:
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2.3.1 The Filtering Problem

Following Bolton and Harris(1999), we will focus only on the perfect equilibria

in stationaryMarkov strategies. Hence the properties of p; the posterior probability

of ¹ being h; which is the natural state variable in our model, are important for

our analysis.

Suppose player i devotes the proportion ®i of the current period [t; t + dt)

to the risky option; and let p(t) be the prior probability that ¹ is h at time t; and

p(t+dt) be the posterior at the end of the current period. Let dp(t) = p(t+dt)¡p(t):

We need to characterize the distribution of dp(t): This problem is usually called a

…ltering problem.

Proposition 2.1 Conditional on the information available to players at time

t, the change in beliefs dp(t) is distributed normally with mean 0 and variance

(®1=¾
2
1 + ®2=¾

2
2)©(p(t))dt; where ©(p) = [p(1¡ p)(h¡ l)]2:

Proof . Since players derive the information about ¹ only from d¼1i (t); these

payo¤s are observationally equivalent to the signals d~¼1i = (®i)
1=2~¹i+dZ

1
i (t); where

~¹i = ¹=¾i: Note that ~¹i takes the values ~li = l=¾i or ~hi = h=¾i with probabilities

(1¡ p) and p: Therefore, applying Bayes’ Rule,

p(t+ dt) =
p(t)F (~h1; ~h2)

p(t)F (~h1; ~h2) + (1¡ p(t))F (~l1; ~l2)
;

13



where F (~¹1; ~¹2) = (2¼dt)
¡1 expf¡(1=2dt)P2

i=1(d~¼
1
i (t)¡(®i)1=2~¹idt)2g is the prob-

ability of observing the payo¤ pro…le d~¼1(t) =
Q2
i=1 d~¼

1
i (t) given (~¹1; ~¹2): Hence,

dp = p(t+ dt)¡ p(t)

=
p(1¡ p)( ~F (~h1; ~h2)¡ ~F (~l1; ~l2))

p ~F (~h1; ~h2) + (1¡ p) ~F (~l1; ~l2)
;

where ~F (~¹1; ~¹2) = expfP2
i=1(®i)

1=2~¹id~¼
1
i ¡ 1=2

P2
i=1 ®i~¹

2
i dtg; and we have sup-

pressed the dependence of variables on t: Note that

~F (~¹1; ~¹2) = 1 + (
2X
i=1

(®i)
1=2~¹id~¼

1
i ¡ 1=2

2X
i=1

®i~¹
2
idt)

+
1

2
f(

2X
i=1

(®i)
1=2~¹id~¼

1
i ¡ 1=2

2X
i=1

®i~¹
2
i dt)g2

= 1 +
2X
i=1

(®i)
1=2~¹id~¼

1
i ;

where we have dropped the terms of order dt3=2 and higher, and where we have

used the fact that (d~¼1i )
2 = dt and d~¼1id~¼

1
j = 0 if i 6= j; respectively. Hence,

dp =
p(1¡ p)(h¡ l)P2

i=1((®i)
1=2=¾i)d~¼

1
i

1 +
P2

i=1(®i)
1=2 ~mi(p)d~¼

1
i

= p(1¡ p)(h¡ l)(
2X
i=1

(®i)
1=2

¾i
d~¼1i )(1¡

2X
i=1

(®i)
1=2 ~mi(p)d~¼

1
i )

= p(1¡ p)(h¡ l)(
2X
i=1

(®i)
1=2

¾i
d~¼1i ¡

2X
i=1

®i ~mi(p)dt)

= p(1¡ p)(h¡ l)
2X
i=1

(®i)
1=2

¾i
d ~Z1i ;

where ~mi(p) = [(1 ¡ p)l + ph]=¾i; and d ~Z1i = d~¼1i ¡ (®i)1=2((1 ¡ p)l + ph)dt: We

have used again the fact that (d~¼1i )
2 = dt and d~¼1i d~¼

1
j = 0 if i 6= j; respectively,

14



and neglected the terms of order dt3=2and higher. Clearly ~Z1 =
Q2
i=1

~Z1i is a

standard 2-dimensional Wiener process. Therefore, dp has mean 0 and variance

[p(1¡ p)(h¡ l)]2(P2
i=1 ®i=¾

2
i ):

This proposition explains the main reason we are using continuous-time

model. In discrete-time model, it is di¢cult to describe the posterior beliefs in

a tractable way.

From Proposition 2.1, we can see that ©(0) = ©(1) = 0: Therefore, once they

become sure about ¹; from that point on, there will be no further change in p;

which is a common feature of Bayesian updating. Also, players’ decision ®i’s have

weighted e¤ects on the variance of dp(t); and these weights are the inverses of ¾2i :

Hence, the more accurate player i’s signal is, the greater will be the in‡uence of

the proportion of his time spent on the risky option on the variance of dp(t):

2.3.2 Properties of The Value Function

Our primary interest in this paper is in Markov perfect equilibria. Therefore,

we will not attempt to de…ne the set of strategies for each player rigorously, and

move directly to Markov strategies. A Markov strategy is a strategy dependent

only on p; which is our natural state variable in this model.

De…nition 2.2 A Markov strategy is a measurable function from [0; 1] to

15



[0; 1]:

Since p(t) has a well-de…ned distribution, and since we are considering only

Markov strategies which are functions of p, it is clear that E[
R1
0
re¡rt(d¼0i+d¼

1
i )(t)]

in the previous section is well-de…ned.

LetMi be the set of Markov strategies for player i: Given any notation with

subscript, such as ai; following convention, we will denote a3¡i by a¡i for i = 1; 2:

De…nition 2.3 A strategy pro…le s = (s1; s2) is a Nash equilibrium if si is a

best response for player i against s¡i for all i = 1; 2: A strategy pro…le » = (»1; »2)

is a subgame perfect Markov equilibrium if » is a Nash equilibrium and »i

is a Markov strategy for all i = 1; 2:

Henceforth, we will simply call a Markov strategy a strategy except where

there is risk of confusion.

Let m(p) = ph+(1¡p)l be the myopic expected payo¤ from the risky option

when ¹ is believed to be h with probability p: Then, player i’s value function,

when the other player’s strategy is »¡i; will be the unique solution of the Hamilton-

16



Jacobi-Bellman equation2

ui(p) = max
0·®i·1

f(1¡ ®i)s+ ®im(p) (2.1)

+
1

r

µ
®i
¾2i
+
»¡i(p)
¾2¡i

¶
©(p)

u00i (p)
2
g:

Thus, as in discrete-time dynamic programming equation, player i’s value function

will be sum of two parts. Firstly, (1¡®i)s+®im(p) is the instant expected payo¤

of devoting ®i of her time to the risky option. The second part

1

r

µ
®i
¾2i
+
»¡i(p)
¾2¡i

¶
©(p)

u00i (p)
2

is the discounted expected value of the changes in ui: As in the discrete-time case,

given this dynamic programming formulation, a strategy »i will be a best response

to »¡i if and only if

»i 2 arg max
0·®i·1

f(1¡ ®i)s+ ®im(p)

+
1

r

µ
®i
¾2i
+
»¡i(p)
¾2¡i

¶
©(p)

u00i (p)
2
g

for all p 2 [0; 1]:

Since

ui(p) = max
0·®i·1

f(1¡ ®i)s+ ®im(p)

+
1

r
(
®i
¾2i
+
»¡i(p)
¾2¡i

)©(p)
u00i (p)
2
g

= max
0·®i·1

fs+ 1
r

»¡i(p)
¾2¡i

©(p)
u00i (p)
2

2 The Hamilton-Jacobi-Bellman equation is the dynamic programming equation in continuous-
time model. As an introduction, see Dixit and Pindyck (1994).
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+®i

µ
1

r¾2i
©(p)

u00i (p)
2

¡ (s¡m(p))
¶
g;

a strategy »i is a best response to »¡i if and only if

»i(p) =

8><>:
0 if (1=(r¾2i ))©(p)u

00
i (p)=2 < s¡m(p)

1 if (1=(r¾2i ))©(p)u
00
i (p)=2 > s¡m(p)

2 [0; 1] if (1=(r¾2i ))©(p)u00i (p)=2 = s¡m(p):
The above result has an immediate interpretation. s¡m(p) will be the oppor-

tunity cost of choosing the risky option for player i; while (1=(r¾2i ))©(p)u
00
i (p)=2

measures the informational gain from her experimentation. Thus, player i will

choose the risky option or the safe one depending on whether or not the informa-

tional gain outweighs the opportunity cost.

We will characterize properties of player i’s value function, which will be

useful for our analysis. Let u(p) = maxfs; m(p)g, which is a myopic payo¤, let

u(p) = (1¡ p)s+ ph, which is the full-information ex-ante payo¤, and let b be the

myopic break-even point such that m(b) = s:

Proposition 2.4 Suppose that player i plays a best response to the strategy

pro…le »¡i: Let ui be her value function. Then u · ui · u and u00i ¸ 0 on [0; 1]:

In particular, u00i (b) > 0:

Proof . Since one possible strategy for her is to choose the safe option when

p 2 [0; b] and the risky one when p 2 (b; 1]; u · ui is clearly true. Also since any

strategy for her in incomplete information case will be also a strategy in complete

18



information case, ui · u is immediate. For the second part, note that the Bellman

equation (2.1) holds if and only if

ui ¸ m+ 1
r
(
1

¾2i
+
»¡i
¾2¡i

)©
u00i
2
and ui ¸ s+ »¡i

r¾2¡i
©
u00i
2

with at least one equality.

If the …rst inequality holds as an equality, then we have

1

r
©
u00i
2
=

ui ¡m
(1=¾2i + »¡i=¾

2
¡i)

¸ 0:

Similarly, if the second inequality holds as an equality and »¡i=¾
2
¡i > 0; then

1

r
©
u00i
2
=

ui ¡ s
(»¡i=¾2¡i)

¸ 0:

If the second inequality holds as an equality and »¡i=¾
2
¡i = 0; then ui = s: Since

ui ¸ s on [0; 1]; ui attains a minimum in this case, and hence u00i ¸ 0: Therefore,

overall, u00i ¸ 0 on [0; 1]:

Lastly, suppose u00i (b) = 0: Then, by (2.1) again, ui(b) = u(b): With the …rst

part of this Lemma, however, this implies that ui has an upward kink at p = b;

which is a contradiction to the fact that u is continuously di¤erentiable for all

p 2 [0; 1]. Hence u00i (b) > 0:

It is easy to prove the following proposition using Proposition 2.4.

Proposition 2.5 Player i’s value function ui is a non-decreasing, convex
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function.

Proof . Since u00i ¸ 0; convexity is trivial. Since ui(0) = s; and since u(p) ¸ s

for all p 2 [0; 1] from Proposition 2.4, it is also clear that ui is non-decreasing.

If p = b; then each player will be myopically indi¤erent between the safe

option and the risky one. By choosing the risky one, however, in addition to

the instant payo¤s, they could also get extra information about the risky option.

Therefore, choosing the risky option is a dominant strategy for each player if p ¸ b:

Proposition 2.6 If, for player i; »i is a best response to »¡i for some »¡i 2

M¡i; then for all p 2 [b; 1]; »i(p) = 1:

The following lemma which says that the payo¤ for player i will not decrease

if the opponent will increase her experimentation can be proved using the fact that

u00i ¸ 0; and it will be useful when we prove the existence of equilibrium in Section

8.

Proposition 2.7 Let »¡i and »̂¡i be strategy pro…les of the other player, and

let ui and ûi be the value functions of player i when she plays a best response to

»¡i and »̂¡i; respectively. If »¡i ¸ »̂¡i; then ui ¸ ûi:

20



Proof . The value function ui satis…es the Bellman equation

ui(p) = max
0·®i·1

f(1¡ ®i)s+ ®im(p) + 1
r
(
®i
¾2i
+
»¡i(p)
¾2¡i

)©(p)
u00i (p)
2
g:

Therefore,

ui(p) ¸ max
0·®i·1

f(1¡ ®i)s+ ®im(p) + 1
r
(
®i
¾2i
+
»̂¡i(p)
¾2¡i

)©(p)
u00i (p)
2
g:

Comparing the inequality with the Bellman equation for ûi

ûi(p) = max
0·®i·1

f(1¡ ®i)s+ ®im(p) + 1
r
(
®i
¾2i
+
»̂¡i(p)
¾2¡i

)©(p)
û00i (p)
2
g;

from the positivity of the Bellman operator, we conclude that ui ¸ ûi:

2.4 The Team Problem

As a benchmark for our equilibrium analysis, we will investigate the team

problem …rst. Since the two players will have signals of di¤erent quality, if social

optimality requires only one of them to select the risky option, we would naturally

conjecture that player 2 should select it. Indeed, at the socially optimal allocation,

there will be two cuto¤s 0 < c2 < c1 < 1 such that player i will choose the risky

option if and only if p 2 (ci; 1]: In this section, we will prove this result.

In the team problem, a social planner will maximize the average payo¤ of

the two players. Hence,
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Lemma 2.8 The value function u¤ for the team problem is the unique solution

of the Bellman equation

u¤(p) = max
0·®1;®2·1

f1
2
[(2¡

2X
i=1

®i)s+ (
2X
i=1

®i)m(p)]

+
1

r
(
2X
i=1

®i
¾2i
)©(p)

u00¤(p)
2
g;

and a strategy pro…le f»ig is an optimal policy for the team problem if and only if

f»ig 2 arg max
0·®1;®2·1

f1
2
[(2¡

2X
i=1

®i)s+ (
2X
i=1

®i)m(p)]

+
1

r
(
2X
i=1

®i
¾2i
)©(p)

u00¤(p)
2
g:

Note that

u¤(p) = max
0·®1;®2·1

f1
2
[(2¡

2X
i=1

®i)s+ (
2X
i=1

®i)m(p)]

+
1

r
(
2X
i=1

®i
¾2i
)©(p)

u00¤(p)
2
g

= max
0·®1;®2·1

fs+
2X
i=1

®i

µ
1

r¾2i
©(p)

u00¤(p)
2

¡ s¡m(p)
2

¶
g:

Since 0 < ¾2 < ¾1 by assumption, it is clear that if f»ig is optimal, then

f»ig =

8>>>>><>>>>>:

0 for all i = 1; 2 if (1=(r¾22))©u
00
¤=2 < (s¡m)=2

1 for i = 2; and 0 for i = 1
if (1=(r¾22))©u

00
¤=2 > (s¡m)=2

> (1=(r¾21))©u
00
¤=2

1 for all i = 1; 2 if (1=(r¾21))©u
00
¤=2 > (s¡m)=2;
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where we suppress the dependence of ©; u00¤; and m on p:

Hence the structure of the optimal policy of this problem is very simple. In

general, there will be two cuto¤ points 0 < c2 < c1 < 1 = c0 so that if p 2 (c1; 1];

then both of the players should select the risky option, if p 2 (c2; c1]; only player 2

ought to select the risky one, and if p 2 [0; c2]; then both should select the safe one.

This structure of the optimal policy is fairly intuitive. We can interpret (s¡m(p))=2

as the common opportunity cost for choosing the risky option. Therefore, all the

players are facing the same conditions regarding cost. The di¤erences in quality

of signals, however, will give them di¤erent bene…ts from experimentation, which

is (1=(r¾2i ))©(p)u
00
¤(p)=2; and therefore, they will have di¤erent break-even points.

Social optimality requires that, unless they are too pessimistic or too optimistic,

only player 2 experiment.

With this structure of the optimal policy in mind, we now know that for

p 2 (cj+1; cj]; the value function u¤ is the solution of the second order di¤erential

equation

u¤(p) =
1

2
[js+ (2¡ j)m(p)] + 1

r
(

2X
i=j+1

1

¾2i
)©(p)

u00¤(p)
2

for j = 0; 1: Of course, if p 2 [0; c2]; then u¤ = s:

It can be seen by direct calculation that

u¤(p) =
1

2
[s+m(p)]

+¯1p
(³1+1)=2(1¡ p)¡(³1¡1)=2 + ¯2p¡(³1¡1)=2(1¡ p)(³1+1)=2;
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where

³1 = (1 + 8r¾
2
2=(h¡ l)2)1=2

is the general solution of this di¤erential equation for p 2 (c2; c1]: For p 2 (c1; 1];

since u¤ is bounded by h;

u¤0(p) = m(p) + ¯0p
¡(³0¡1)=2(1¡ p)(³0+1)=2

will be the solution, where

³0 =

µ
1 +

8r

(h¡ l)2(1=¾21 + 1=¾22)
¶1=2

:

To obtain the …nal solution, we need to specify 2 cuto¤ points c1; c2 in addition to

the 3 parameters, (¯0; ¯1; ¯2); and they will be determined by boundary conditions

which include value matching conditions and smooth pasting conditions.3

Let u¤(p) over (cj+1; cj] be u¤j(p) for j = 0; 1: Then the value matching

conditions will be

u¤0(c1) = u¤1(c1); and u¤1(c2) = s:

The smooth pasting conditions for the value functions, u¤j’s, are

u0¤0(c1) = u
0
¤1(c1); and u

0
¤1(c2) = 0:

Since we have …ve parameters to determine, we need one more boundary condition,

and the following theorem provides it.

3 For an introductory explanation for these conditions, see Dixit and Pindyck (1994), Ch.4.
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Lemma 2.9 At the optimal solution of the team problem,

u00¤1(c1) = u
00
¤0(c1):

Proof . In the following proof, we will extend the domains of u¤0 and u¤1 to

(0; 1); if necessary: Suppose u00¤1(c1) > u
00
¤0(c1): Since

s¡m(p)
2

· 1

r¾21
©(p)u00¤0(p)=2

for all p 2 (c1; 1]; and since u00¤0 and u00¤1 are continuous, there exists " > 0 such that

s¡m(p)
2

<
1

r¾21
©(p)u00¤1(p)=2

for all p 2 (c1 ¡ "; c1 + "); which is contradictory to the optimality of »1 = 0 for

p 2 [0; c1]:

Suppose u00¤1(c1) < u
00
¤0(c1): Optimality and continuity imply that

1

r¾21
©(c1)

u00¤1(c1)
2

· s¡m(c1)
2

· 1

r¾21
©(c1)

u00¤0(c1)
2

:

We …rst show that it is impossible to have the second inequality above hold with

equality. If it holds with equality, then

u¤(p) ! m(c1) +
1

r

µ
1

¾21
+
1

¾22

¶
©(c1)

u00¤0(c1)
2

=
s+m(c1)

2
+

1

r¾22
©(c1)

u00¤0(c1)
2
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as p& c1: Also

u¤(p)! s+m(c1)

2
+

1

r¾22
©(c1)

u00¤1(c1)
2

as p% c1: Since u00¤1(c1) < u
00
¤0(c1); however, u¤ can’t be continuous at c1: Thus,

1

r¾21
©(c1)

u00¤1(c1)
2

· s¡m(c1)
2

<
1

r¾21
©(c1)

u00¤0(c1)
2

:

Since u00¤0 is continuous, this implies that there exists " > 0 such that

s¡m(p)
2

<
1

r¾21
©(p)

u00¤0(p)
2

for all p 2 (c1 ¡ "; c1): Also, 1) u¤1 and u¤0 are convex, 2) u¤0(c1) = u¤1(c1); and

u0¤0(c1) = u0¤1(c1); 3) u
00
¤1(c1) < u00¤0(c1) altogether imply that there exists "

0 > 0

such that u¤0(p) > u¤1(p) for all p 2 (c1 ¡ "0; c1): This, however, contradicts the

optimality for player 1 of ceasing to choose the risky option if p · c1.

It is notable that u00¤1(c1) = u00¤0(c1) implies that, when the social planner

allocates player 1’s time, she ought to be indi¤erent between the safe option and

the risky one at p = c1. This could also be shown as following by invoking a

stopping time, which will show more clearly that this boundary condition comes

from the fact that p(t) follows Brownian motion. We will show that the social

planner can’t strictly prefer player 1 choosing the safe option at p = c2: The

argument for the other case is similar.

Suppose so. Let ¿ 1 be a stopping time which is induced from »i; adapted
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to an obvious …ltration, and indicates the …rst time player 1 will choose the risky

option assuming that p(0) 2 (c1; c2): Let t1 be the …rst time such that p(t1) = c1:

Because of the path properties of Brownian motion, for any " > 0; Pr(p(t) > c1 for

some t1 < t < t1 + "jp(t1) = c1) = 1: Therefore, Pr(¿ 1 < t2 + "j¿ > t2) = 1 for all

" > 0: This implies, however, that Pr(¿ · t2j¿ > t2) = 1, which is a contradiction.

From this, it follows immediately that all the parameters are uniquely deter-

mined.

Theorem 2.10 At the optimal solution of the team problem, there will be two

cuto¤ points 0 < c2 < c1 < 1 so that

»1(p) =

(
0 if p 2 [0; c1]
1 if p 2 (c1; 1]

; and »2(p) =

(
0 if p 2 [0; c2]
1 if p 2 (c1; 1]

:

The two cuto¤ points c1 and c2 will be unique.

2.5 The Leader-Follower Model of Strategic
Experimentation

We will call the 2 player game in our analysis Leader-Follower Model of

Strategic Experimentation (LFMSE). Sometimes, to emphasize the importance of

the parameters ¾1 and ¾2; we say LFMSE with parameters (¾1; ¾2): It will be

shown in three steps that the equilibria of LFMSE will be of very simple type.
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In the …rst step, we will show that there is no symmetric equilibrium. In the

second step, it will be shown that if a strategy pro…le » = (»1; »2) is an equilibrium

of LFMSE, then there are 0 < c1 < c2 < 1 such that both players will choose

the safe one for p 2 [0; c1]; and both will choose the risky one for p 2 (c2; 1]: If

p 2 (c1; c2]; then there will be two possible cases. Either both will use mixed

strategies or one of the players will choose the safe option, and the other chooses

the risky one. In the last step, by showing that it is impossible for both players to

use mixed strategies at the same time, we conclude that there are only asymmetric

equilibria, the structure of which is extremely simple.

2.5.1 Non-Existence of a Symmetric Equilibrium

We will now show that there is no symmetric equilibrium in the LFMSE.

We begin with the following lemma, which follows immediately from the results

summarized in Section 3.

Lemma 2.11 A strategy pro…le (»1; »2) is a subgame perfect Markov equilibrium

in LFMSE if and only if for all p 2 [0; 1];

»1(p) 2 arg max
0·®1·1

f(1¡ ®1)s+ ®1m(p) + 1
r

µ
®1
¾21
+
»2(p)

¾22

¶
©(p)

u001(p)
2
g

and

»2(p) 2 arg max
0·®2·1

f(1¡ ®2)s+ ®2m(p) + 1
r

µ
®2
¾22
+
»1(p)

¾21

¶
©(p)

u002(p)
2
g;
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where u1 and u2 are the unique solutions of the following Bellman equations, re-

spectively.

u1(p) = max
0·®1·1

f(1¡ ®1)s+ ®1m(p) + 1
r

µ
®1
¾21
+
»2(p)

¾22

¶
©(p)

u001(p)
2
g (2.2)

and

u2(p) = max
0·®2·1

f(1¡ ®2)s+ ®2m(p) + 1
r

µ
®2
¾22
+
»1(p)

¾21

¶
©(p)

u002(p)
2
g: (2.3)

It is easy to see why there can’t be any symmetric equilibrium if ¾1 6= ¾2. If

there were a symmetric equilibrium, since both players would behave in the same

way, their value functions should be the same. If, however, the value functions

were the same, then the informational gains from experimentation, which is de-

pendent on ¾i; would be di¤erent across players. Therefore, the cuto¤ point at

which the informational gain begins to outweigh the common opportunity cost of

experimentation would be di¤erent. Thus, they couldn’t use the same strategies.

Theorem 2.12 There is no symmetric equilibrium in LFMSE.

Proof . Suppose a strategy pro…le (»; ») is a symmetric equilibrium. Let u1 be

the unique solution of the Bellman equation

u1 = max
0·®1·1

f(1¡ ®1)s+ ®1m(p) + 1
r

µ
®1
¾21
+
»

¾22

¶
©(p)

u001(p)
2
g;
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and u2 be the unique solution of the Bellman equation

u2 = max
0·®2·1

f(1¡ ®2)s+ ®2m(p) + 1
r

µ
®2
¾22
+
»

¾21

¶
©(p)

u002(p)
2
g:

Since (»; ») is an equilibrium,

u1 = (1¡ »)s+ »m(p) + 1
r

µ
»

¾21
+
»

¾22

¶
©(p)

u001(p)
2
; (2.4)

and

u2 = (1¡ »)s+ »m(p) + 1
r

µ
»

¾21
+
»

¾22

¶
©(p)

u002(p)
2
: (2.5)

From the value matching conditions including u1(1) = u2(1) = h and u1(0) =

u2(0) = l; and from the smooth pasting conditions, the above two di¤erential

equations will have the same boundary conditions so that u1 = u2 = u:

Suppose that there exists an open interval (c1; c2) such that 0 < »(p) < 1 for

all p 2 (c1; c2): Then, c2 · b, because of Proposition 2.6: Therefore, for p 2 (c1; c2);

s ¡m(p) > 0: Since (»; ») is an equilibrium, 0 < »(p) < 1 for p 2 (c1; c2) implies

that

1

r¾21
©(p)

u00(p)
2

= s¡m(p) = 1

r¾22
©(p)

u00(p)
2

> 0;

which is impossible. Therefore, there is no open interval (c1; c2) such that 0 <

»(p) < 1 for all p 2 (c1; c2):

Now let c1 = supfc : »(p) = 0 for all p 2 [0; c]g: Thus, u(p) = s for all p 2

[0; c1]: Note again that by Proposition 2.6, c1 < b. Hence, there exists c2 2 (c1; b)
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such that »(p) = 1 for all p 2 (c1; c2): Therefore, for all p 2 (c1; c2);

u(p) = m(p) +
1

r

µ
1

¾21
+
1

¾22

¶
©(p)

u00(p)
2
:

That is,

1

r

µ
1

¾21
+
1

¾22

¶
©(p)

u00(p)
2

= u¡m(p): (2.6)

Also, since (»; ») is an equilibrium, for p 2 (c1; c2);

1

r

1

¾21
©(p)

u00(p)
2

¸ s¡m(p) and 1

r

1

¾22
©(p)

u00(p)
2

¸ s¡m(p). (2.7)

From (2.6) and (2.7), for p 2 (c1; c2); we have

1

r

µ
1

¾21
+
1

¾22

¶
©(p)

u00(p)
2

= u(p)¡m(p)

¸ 2(s¡m(p));

which is a contradiction since u(p) and m(p) are continuous at c1; u(c1) = s; and

s¡m(c1) > 0:

2.5.2 Simple Pure Strategies and Simple Mixed Strategies

We will show in this section that if there is an equilibrium, its structure is

fairly simple. If » is an equilibrium, then there are always three intervals of p; on the

…rst interval starting from zero, neither of the two players are experimenting, on the

second one adjacent to the …rst interval, either only one of them is experimenting or

both of them are experimenting at the same time, and on the last interval ending

at 1, both of them are experimenting. According to the status over the second
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interval, we will call an equilibrium simply pure or simply mixed.

De…nition 2.13 A strategy pro…le » = (»1; »2) is a simple pure strategy

(SPS) if there exist 0 < c1; c2 < 1 such that »i = 0 for p 2 [0; ci]; and »i = 1 for

p 2 (ci; 1]: A strategy pro…le » = (»1; »2) is a simple mixed strategy (SMS) if

there exist 0 < c1 < c2 < 1 such that for p 2 [0; c1]; »1 = »2 = 0; for p 2 (c1; c2);

0 < »1; »2 < 1; and for p 2 [c2; 1]; »1 = »2 = 1:

Suppose that player 1 is de…nitely choosing either the safe or the risky option

on an open interval (c; c): Player 2’s best response on this interval will be the

solution to the appropriate optimal stopping problem restricted on this interval.

Hence, it will be characterized by a cuto¤ rule. The following lemma veri…es this

intuition. It shows that it is impossible for only one player to strictly mix in

equilibrium on any open interval.

Lemma 2.14 If a strategy pro…le » = (»1; »2) is an equilibrium in LFMSE,

then there is no open interval (c; c) such that for all p 2 (c; c); either »i(p) = 0

and 0 < »¡i(p) < 1 or »i(p) = 1 and 0 < »¡i(p) < 1; for i = 1; 2:

Proof . Suppose there exists an open interval (c; c) such that for all p 2 (c; c),
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»1(p) = 0 and 0 < »2(p) < 1: Then for p 2 (c; c);

1

r¾22
©
u002
2
= s¡m:

Thus, for all p 2 (c; c);

u2 = (1¡ »2)s+ »2m+
1

r

»2
¾22
©
u002
2

= s:

Therefore, u002 = 0 on this interval. From Proposition 2.6, we know that c · b; and

thus for p 2 (c; c);
1

r¾22
©(p)

u002(p)
2

= s¡m(p) > 0;

which is a contradiction. The proof for the case when »2(p) = 0 and 0 < »1(p) < 1

is similar.

Now suppose that there exists an open interval (c; c) such that, for all p 2

(c; c), »1(p) = 1 and 0 < »2(p) < 1: Then, again for all p 2 (c; c);

1

r¾22
©
u002
2
= s¡m;

and this implies that

u2 = (1¡ »2)s+ »2m+
1

r

µ
1

¾21
+
»2
¾22

¶
©
u002
2

= s+ (
¾2
¾1
)2(s¡m);

which is a strictly decreasing function. This is a contradiction, since u2 is increasing

by Proposition 2.5. The proof when »2(p) = 1 and 0 < »1(p) < 1 is similar.
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With the above lemma, we could drastically reduce the set of strategy pro…les

that could be equilibria.

Theorem 2.15 If a strategy pro…le » = (»1; »2) is an equilibrium, then it is

either an SPS or an SMS.

Proof . We will …rst show that there is no equilibrium » = (»1; »2) such that

»1 =

(
0 if p 2 [0; c1) or p 2 (c2; c3]
1 if p 2 (c1; c2) or p 2 (c3; 1];

and

»2 =

(
0 if p 2 [0; c2)
1 if p 2 (c2; 1];

for 0 < c1 < c2 < c3 < 1:We will prove this by comparing the number of boundary

conditions and the number of parameters in the di¤erential equation system. If »

is an equilibrium, we will have 10 coe¢cients and 3 cuto¤ points to determine. As

boundary conditions, we will have six value matching conditions at cuto¤ points,

and …ve smooth pasting conditions; one at each p = c1; c2; and c3 for player 1, and

one at each p = c2 and c3 for player 2. Moreover, we will have three boundary

conditions about the second order derivatives of the value functions, which could be

derived from an argument similar to the discussion following the proof of Lemma

2.9. In summary, we have 13 parameters whereas we have 14 boundary conditions.

It can be shown similarly that, in general, it is impossible for the two players to
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experiment in turn at equilibrium. Now, let c1 = supfc : »1 = 0 for all p 2 [0; c)g;

c2 = supfc : »2 = 0 for all p 2 [0; c)g; c1 = inffc : »1 = 1 for all p 2 (c; 1]g and

c2 = inffc : »2 = 1 for all p 2 (c; 1]g:

Then, with the result demonstrated at the beginning of this proof, by Theo-

rem 2.12 and Lemma 2.14, we have to consider only the following four possibilities.

If c1 = c2; then by Lemma 2.14, »1 = »2 = 0 for 0 · p < c1; and »1 = »2 = 1

for c1 < p · 1: This, however, is shown to be impossible in the proof of Theorem

2.12.

If c2 < c1; then again by Lemma 2.14, it is clearly an SPS. Also, if c1 < c2;

and c1 = c2; then again by Lemma 2.14, it is an SMS. If c1 < c2; it is clearly an

SPS.

Suppose that player 1 and 2 are strictly mixing on an open interval (c; c):

Then, their private bene…ts from experimentation should be the same, given the

common opportunity cost of experimentation. That is,

1

r¾21
©
u001
2
= s¡m =

1

r¾22
©
u002
2
:

Therefore, u001(p) = (¾1=¾2)
2u002(p); which implies that the curvature of u1 is strictly

greater than u2: Since their values at c are the same, it implies that u1 should be

greater than u2: For u1 = u2 = h at p = 1; however, if u1 > u2 for some open

interval, then u1 would be required to have smaller curvature. This is the main
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reason why we can’t have an SMS equilibrium if ¾1 6= ¾2:

The following lemma, which is a modi…cation of Theorem 9 in Bolton and

Harris (1999), will be useful in the proof of non-existence of SMS equilibria. Since

its proof is similar to that of Theorem 2.21, it will be omitted.

Lemma 2.16 Let a strategy pro…le » = (»1; »2) be an SMS, let ui be player i’s

value function when she plays a best response against »¡i; and let

¯1 =

µ
u2 ¡ s
s¡m

¶
and ¯2 =

µ
u1 ¡ s
s¡m

¶
:

If » is an SMS equilibrium, then

»1 =

(
(¾1=¾2)

2¯1 if ¯1 · (¾2=¾1)2 and p < b
1 otherwise,

and

»2 =

(
(¾2=¾1)

2¯2 if ¯2 · (¾1=¾2)2 and p < b
1 otherwise.

Theorem 2.17 If a strategy pro…le » = (»1; »2) is an equilibrium in the LFMSE,

then it is an SPS equilibrium.

Proof . With Theorem 2.15, it su¢ces to show that there is no SMS equilibrium

in the LFMSE. Suppose that » = (»1; »2) is an SMS equilibrium in the LFMSE, and

that 0 < »1(p); »2(p) < 1 if and only if p 2 (c; c): Note that c · b by Proposition
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2.6.

Now 0 < »1(p); »2(p) < 1 for p 2 (c; c) implies that

u001(p) = (
¾1
¾2
)2u002(p) > 0: (2.8)

Also (1=(r¾22))©u
00
2=2 = s¡m for p 2 (c; c) implies that the value function for

player 2, u2; will be the solution of the following second order di¤erential equation:

u2 = (1¡ »2)s+ »2m+
1

r
(
»1
¾21
+
»2
¾22
)©
u002
2

(2.9)

= s+
1

r

»1
¾21
©
u002
2
:

Therefore, for p 2 [c; c];

u2(p) = s+ ¯1f(p) + ¯2g(p); (2.10)

where f(p) and g(p) are two independent solutions for the di¤erential equation

u2(p) =
1

r

»1(p)

¾21
©(p)

u002(p)
2
:

From (2.8) with the boundary conditions for the value functions including

u1(c) = u2(c) = s; and u01(c) = u
0
2(c) = 0;

we obtain

u1(p) = s+ (
¾1
¾2
)2(¯1f(p) + ¯2g(p)) (2.11)

for p 2 [c; c]:
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Since »1(c) = »2(c) = 1; from Lemma 2.16,

(
¾2
¾1
)2(
u1 ¡ s
s¡m ) = (

¾1
¾2
)2(
u2 ¡ s
s¡m ) (2.12)

at p = c: From (3.10), (3.11), and (3.12),

¯1f(c) + ¯2g(c) = 0:

Also, the value matching condition u1(c) = u2(c) = s implies that

¯1f(c) + ¯2g(c) = 0;

which is a contradiction since ui is strictly increasing on (c; c) due to both Propo-

sition 2.5 and u00i > 0 for p 2 (c; c):

We have proved that there is no SMS equilibrium in the LFMSE. Conse-

quently, the symmetric equilibrium in Bolton and Harris (1999), which is an SMS,

disappears as soon as we add heterogeneity into the structure of the noise.

2.5.3 Uniqueness

For the uniqueness of each type of SPS equilibrium, given the di¤erential

equation systems for the value functions on each interval, we should have an ad-

equate number of boundary conditions. In this section, we will provide two extra

boundary conditions in addition to the usual value matching conditions and the

smooth pasting conditions. Uniqueness of each type of equilibrium will follow

immediately from this.
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Lemma 2.18 Suppose that

»i(p) =

(
0 if p 2 [0; c1]
1 if p 2 (c1; 1]

and

»¡i(p) =

(
0 if p 2 [0; c2]
1 if p 2 (c2; 1]

is an equilibrium of LFMSE, where 0 < c2 < c1 < 1 = c0. Let u
j
i (p) be the player

i’s value function associated with » = (»1; »2) on (cj+1; cj], j = 0; 1: Then,

(u0i )
00(c1) = (u1i )

00(c1); and (u0¡i)
0(c1) = (u1¡i)

0(c1):

Proof . Since the proof for (u0i )
00(c1) = (u1i )

00(c1) is similar to that of Theorem

2.9, we will prove only (u0¡i)
0(c1) = (u1¡i)

0(c1): Since u
j
¡i is convex and increasing, it

is impossible to have (u0¡i)
0(c1) < (u1¡i)

0(c1): Suppose (u0¡i)
0(c1) > (u1¡i)

0(c1): Then,

there exists " > 0 such that u0¡i(p) < u
1
¡i(p) for all p 2 (c1 ¡ "; c1): If »i(p) were

1 for p 2 (c1 ¡ "; c1); then u0¡i(p) would still be the value function for player i:

Since »i = 0 for p 2 (c1 ¡ "; c1); by Proposition 2.7, u0¡i(p) ¸ u1¡i(p); which is a

contradiction.

With the previous lemma, we see that the number of boundary conditions is

equal to that of parameters in our di¤erential equation systems. Hence, it should

be clear that each type of equilibrium is unique.
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Theorem 2.19 Suppose that

»i(p) =

(
0 if p 2 [0; c1]
1 if p 2 (c1; 1]

and

»¡i(p) =

(
0 if p 2 [0; c2]
1 if p 2 (c2; 1]

;

where 0 < c2 < c1 < 1 = c0; is an equilibrium of LFMSE. Then, there is no other

equilibrium ~» = (~»1; ~»2) such that ~»i · ~»¡i for all p 2 [0; 1]:

In the remainder of this paper, we will use a leader and a follower to distin-

guish each player at SPS equilibria in the following sense.

De…nition 2.20 A strategy pro…le » = (»1; »2) is an SPS with player i as a

leader and player j as a follower, i = 1 or 2, j = 3¡ i; if » is an SPS and if

there exist 0 < c1 < c2 < 1 such that »i = 1 and »j = 0 for p 2 (c1; c2]:

2.6 Robustness of SPS Equilibria

The main result of this section shows that, for a broad range of parameters,

the length of the interval of p on which only one player is doing experimentation

at an SPS equilibrium will be bounded away from zero. Bolton and Harris (1999)

focus only on the symmetric equilibriumwith the assumption of homogeneity. That
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is, with the assumption that ¾1 = ¾2; they do not investigate the properties of an

asymmetric equilibrium. The results of this paper, however, show that the unique

symmetric equilibrium in Bolton and Harris (1999) is not robust to perturbations

in ¾i’s when there are two players. Moreover, when ¾2 is close to ¾1; the length

of the interval of p on which only one player is doing experimentation will be

shown to be bounded away from zero. This suggests the existence of an SPS

equilibrium which is asymmetric in the setting of Bolton and Harris (1999). In

fact, the existence proof for an SPS equilibrium in Section 2.8 will be valid for the

homogeneous case, too. That is, when we have homogeneous noise structures, we

have three equilibria; two asymmetric pure strategy equilibria, and one symmetric

mixed strategy equilibrium. Only asymmetric equilibria, however, are robust to

perturbations. Thus, we argue that, when we have two players, focusing on the

symmetric equilibrium as in Bolton and Harris (1999) has little justi…cation, and

that the focus of the future research be on the asymmetric equilibria even in the

symmetric game.

Following characterization theorem for an SPS equilibrium is crucial for the

main theorem.

Theorem 2.21 Suppose that a strategy pro…le » = (»1; »2) is an SPS with player

i as a leader and player j as a follower, i = 1 or 2; j = 3¡ i: Let ui be player i’s

41



value function when she plays a best response to »¡i; and let ¯i = (ui¡ s)=(s¡m)

for i = 1;2. Then, » is an SPS equilibrium if and only if

»i =

(
0 if ¯i · 0 and p < b

1 otherwise;

and

»j =

(
0 if ¯j · (¾j=¾i)2 and p < b
1 otherwise:

For the proof of Theorem 2.21, we need a technical lemma.

Lemma 2.22 Suppose that a strategy pro…le » = (»1; »2) is an SPS equilibrium,

and that »1(p) = 0 if 0 · p · c1; »1(p) = 1 if c1 < p · 1; »2(p) = 0 if 0 · p · c2;

and »1(p) = 1 if c2 < p · 1; where 0 < c1 6= c2 < 1: Let ui be the value function

of player i when she plays a best response to »¡i: Then, for all i = 1; 2; for all

p > ci;

1

r¾2i
©
u00i
2
¸ s¡m;

where equality holds for at most one ~p such that ~p 2 (maxfc1; c2g; b]:

Proof . We will prove this for the case c1 < c2. The proof for the case c1 > c2 is

similar. Since s¡m(p) < 0 for p > b; it is clear that if there exists a p such that

the above inequality holds as an equality, it should be less than or equal to b:
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That »1(p) = 1 for c1 < p · 1 implies

1

r¾21
©(p)

u001(p)
2

¸ s¡m(p)

for p 2 (c1; 1]: Now suppose that

1

r¾21
©(p̂)

u001(p̂)
2

= s¡m(p̂)

for some p̂ 2 (c1; c2): Then, since »2(p) = 0 for p 2 (c1; c2);

u1(p̂) = m(p̂) +
1

r¾21
©(p̂)

u001(p̂)
2

= s:

As u1 is increasing by Proposition 2.5, u1(p̂) = s implies that u1 = s for all p · p̂:

Then, u001 = 0 for all p · p̂; which is a contradiction to the assumption that

1

r¾21
©(p̂)

u001(p̂)
2

= s¡m(p̂) > 0:

Suppose

1

r¾21
©(~p)

u001(~p)
2

= s¡m(~p)

for some ~p 2 (c2; b]: Then, we will show that there exists at most one such ~p in

(c2; b]:

From »2(p) = 1 for p 2 (c2; b];

u1(~p) = m(~p) +
1

r
(
1

¾21
+
1

¾22
)©(~p)

u001(~p)
2

= s+ (
¾1
¾2
)2(s¡m(~p)):

As s+(¾1=¾2)2(s¡m(p)) is a strictly decreasing function of p, that u1 is increasing
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clearly implies that there exists at most one such ~p. The proof for player 2 is

similar.

Proof of the Main Theorem . We will prove this for the case when player 1

is a leader and player 2 is a follower. The proof for the case when player 2 is a

leader and player 1 is a follower is similar.

=)

A strategy pro…le » = (»1; »2) is an equilibrium if and only if

»1 2 arg max
0·®1·1

f(1¡ ®1)s+ ®1m(p) + 1
r

µ
®1
¾21
+
»2(p)

¾22

¶
©(p)

u001(p)
2
g

and

»2 2 arg max
0·®2·1

f(1¡ ®2)s+ ®2m(p) + 1
r

µ
®2
¾22
+
»1(p)

¾21

¶
©(p)

u002(p)
2
g;

where u1 and u2 are the unique solutions of the following Bellman equations,

respectively:

u1 = max
0·®1·1

f(1¡ ®1)s+ ®1m(p) + 1
r

µ
®1
¾21
+
»2(p)

¾22

¶
©(p)

u001(p)
2
g (2.13)

and

u2 = max
0·®2·1

f(1¡ ®2)s+ ®2m(p) + 1
r

µ
®2
¾22
+
»1(p)

¾21

¶
©(p)

u002(p)
2
g: (2.14)

Let

vi(p) =
1

r¾2i
©(p)

u00i (p)
2
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for i = 1; 2: Note that vi ¸ 0 by Proposition 2.5.

Suppose that »1 6= »2 if and only if p 2 (c1; c2]:

Suppose p < b: Then, there are three possible cases.

If 0 · p · c1; then »1 = »2 = 0: Hence, from (2.13) and (2.14), u1 = u2 = s:

) ¯1 = ¯2 = 0:

If c1 < p · c2; then »1 = 1, »2 = 0: That »2 = 0 implies that v2 · s ¡m:

Note that v1 > s¡m from Lemma 2.22. Now, from (2.13), u1 = m+ v1: Thus,

¯1 =
u1 ¡ s
s¡m = ¡1 + v1

s¡m > 0:

Also from (2.14),

u2 = s+ (¾2=¾1)
2v2:

Hence,

¯2 =
u2 ¡ s
s¡m

= (
¾2
¾1
)2

v2
s¡m · (¾2

¾1
)2:

If c2 < p < b; then »1 = »2 = 1: That »1 = »2 = 1 implies that v1; v2 ¸ s¡m:

Therefore, from (2.13),

u1 ¡ s = m+ v1 +
1

r¾22
©
u001
2
¡ s (2.15)

¸ 1

r¾22
©
u001
2
:

By Lemma 2.22, strict inequality holds in (2.15) for all but at most one p 2 (c2; b):

Since u1 ¡ s is increasing and u001 ¸ 0, then it is clearly true that u1 ¡ s > 0 for all
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p 2 (c2; b). Hence, ¯1 > 0:

From (2.14),

u2 = m+ (1=(r¾
2
1))©u

00
2=2 + v2:

Therefore,

¯2 =
u2 ¡ s
s¡m (2.16)

= ¡1 +
µ
1 + (

¾2
¾1
)2
¶
(
v2

s¡m)

¸ ¡1 +
µ
1 + (

¾2
¾1
)2
¶
= (

¾2
¾1
)2:

By Lemma 2.22 again, in (2.16), strict inequality holds for all but at most one

p 2 (c2; b): It is easy to see that (u2 ¡ s)=(s¡m) is strictly decreasing. Hence, it

is clearly true that ¯2 > (¾2=¾1)
2 for all p 2 (c2; b).

Suppose p ¸ b: Then, »1 = »2 = 1 by Proposition 2.6, and hence there

remains nothing to show.

(=

Suppose p < b: There are three possible cases.

If v1; v2 · s¡m; then we will show that (»1; »2) = (0; 0): From (2.14),

u2 = s+ »1(¾2=¾1)
2v2:

Hence,

(
u2 ¡ s
s¡m ) = (

¾2
¾1
)2»1(

v2
s¡m)
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· (
¾2
¾1
)2»1

· (
¾2
¾1
)2:

Therefore, »2 = 0: With this result, from (2.13),

u1 = s+ »2(¾1=¾2)
2v1 = s:

That is, »1 = 0:

If v1 > s¡m ¸ v2; then we will show that (»1; »2) = (1; 0): From (2.14),

u2 = s+ »1(¾2=¾1)
2v2:

Hence, as in the previous case, »2 = 0: With this result, from (2.13),

u1 = m+ v1 + »2(
¾1
¾2
)2v1

= m+ v1:

)

u1 ¡ s
s¡m = ¡1 + v1

s¡m > 0:

Hence, »1 = 1:

If v1; v2 > s¡m; then we will show that (»1; »2) = (1; 1): From (2.13),

u1 = m+ v1 + »2(¾1=¾2)
2v1:

Thus,

u1 ¡ s
s¡m = ¡1 +

µ
(
¾1
¾2
)2»2 + 1

¶
(
v1

s¡m)
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> (
¾1
¾2
)2»2 ¸ 0:

) »1 = 1: With this result, from (2.14),

u2 = m+ v2 + »1(¾2=¾1)
2v2:

Hence,

u2 ¡ s
s¡m = ¡1 +

µ
(
¾2
¾1
)2»1 + 1

¶
(
v2

s¡m)

> (
¾2
¾1
)2»1 = (

¾2
¾1
)2:

Therefore, »2 = 1:

If p ¸ b; then again there remains nothing to show due to Proposition 2.6.

Given an SPS » = (»1; »2); suppose that »1(p) 6= »2(p) if and only if p 2 (c; c]:

Then, let ´ : S2 ! R be a function de…ned as

´(») = c¡ c;

where S is the set of SPS. Hence, ´ is a function which maps each SPS to the

length of the interval on which only one player is experimenting.

Theorem 2.23 Given LFMSE with parameters (¾1; ¾2); 0 < ¾2 < ¾1; let

l(¾1; ¾2) = inf
»
´(»);

where the inf is taken over the set of »’s such that » is an SPS equilibrium in
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LFMSE with parameters (¾1; ¾2): If ¾1 < (h¡ l)=r1=2; then

lim inf
¾2!¾1

l(¾1; ¾2) > 0:

Proof . Suppose that a strategy pro…le » = (»1; »2) is an SPS equilibrium in the

LFMSE with parameters (¾1; ¾2); and that »1(p) 6= »2(p) if and only if p 2 (c; c]:

Let ui be the value function of player i when she plays a best response to »¡i: Let

c¤1 be the cuto¤ point for player 1 when player 2 is using »2 = 0; and let c
¤
2 be the

cuto¤ point for player 2 when player 1 is using »1 = 0: That is, against »1 = 0;

it is optimal for player 2 to choose the safe option when p 2 [0; c¤2]; and the risky

one when p 2 (c¤2; 1]: Also, against »2 = 0; it is optimal for player 1 to choose

the safe option when p 2 [0; c¤1]; and the risky one when p 2 (c¤1; 1]: Finally let u¤1
and u¤2 be the value functions of player 1 and 2 in this case, respectively. Then,

by Proposition 2.7, u¤1 · u1; and u¤2 · u2: Suppose that » = (»1; »2) is an SPS

equilibrium with player 2 as a leader and player 1 as a follower. Then, u¤2 · u2

implies that c · c¤2: Note that c
¤
2 is determined by the value matching condition

and smooth pasting condition as in the analysis of the Team Problem, and the

result is

c¤2 =
(³ ¡ 1)(s¡ l)

(³ ¡ 1)(s¡ l) + (³ + 1)(h¡ s) ;
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where

³ =

µ
1 +

8r¾22
(h¡ l)2

¶1=2
:

The following argument is based on simple geometry. Therefore, drawing a

diagram while reading the proof will be helpful.

By Theorem 2.21, at p = c

u1 = s+ (
¾1
¾2
)2(s¡m):

Since u1 is an increasing convex function and u1 · u = ph+ (1¡ p)s; c can’t be

less than ® such that

u(®) = s+ (¾1=¾2)
2(s¡m(®)):

Let ®0 be the number such that u(®0) = s+ s¡m(®0). That is

®0 =
s¡ l

2h¡ s¡ l :

Then, since u is strictly increasing, and

s+ s¡m(®) < s+ (¾1=¾2)2(s¡m(®));

it is clear that ®0 < ®: Hence,

´(») = c¡ c

¸ ®0 ¡ c¤2

=

·
(s¡ l)(h¡ s)
(h¡ s) + (h¡ l)

¸ ·
3¡ ³

(³ ¡ 1)(s¡ l) + (³ + 1)(h¡ s)
¸
:

Since ³ > 1; the last expression will be positive if ³ < 3 which is equivalent to
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¾2 < (h¡ l)=r1=2: Therefore, if ¾1 < (h¡ l)=r1=2; then

³ <

µ
1 +

8r¾21
(h¡ l)2

¶1=2
< 3:

Let ³¤ = (1 + 8r¾21=(h¡ l)2)1=2: Then, since

3¡ ³
(³ ¡ 1)(s¡ l) + (³ + 1)(h¡ s)

is strictly decreasing for ³ 2 [1; 3];

´(») ¸
·
(s¡ l)(h¡ s)
(h¡ s) + (h¡ l)

¸ ·
(3¡ ³)

(³ ¡ 1)(s¡ l) + (³ + 1)(h¡ s)
¸

(2.17)

>

·
(s¡ l)(h¡ s)
(h¡ s) + (h¡ l)

¸ ·
(3¡ ³¤)

(³¤ ¡ 1)(s¡ l) + (³¤ + 1)(h¡ s)
¸
:

Now suppose that » = (»1; »2) is an SPS equilibrium with player 1 as a leader

and player 2 as a follower. Again u¤1 · u1 implies that c · c¤1: Note that c¤1 will

be determined in the same way as c¤2; and the result is

c¤1 =
(³¤ ¡ 1)(s¡ l)

(³¤ ¡ 1)(s¡ l) + (³¤ + 1)(h¡ s) :

Now by Theorem 2.21, at p = c

u2 = s+ (
¾2
¾1
)2(s¡m):

The basic idea of the proof is almost the same as in the previous case. We will

show that there is ¾¤2 < ¾1 such that for all ¾2 > ¾
¤
2; the distance between c

¤
1 and

the intersection of s+ (¾2=¾1)2(s¡m) and u is bounded away from zero.

Since u2 is an increasing convex function and u2 · u = ph+(1¡p)s; c should
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be greater than or equal to ¯ such that

u(¯) = s+ (¾2=¾1)
2(s¡m(¯)):

It is easy to see that

¯ =
s¡ l

(¾1=¾2)2(h¡ s) + (h¡ l) :

Hence,

´(») ¸ ¯ ¡ c¤1

=

·
(s¡ l)(h¡ s)

(³¤ + 1)(h¡ s) + (³¤ ¡ 1)(s¡ l)
¸ ·

2¡ (¾1=¾2)2(³¤ ¡ 1)
(¾1=¾2)2(h¡ s) + (h¡ l)

¸
:

If ¾1 < (h¡ l)=r1=2; then ³¤ < 3; and hence, there exists ¾¤2 < ¾1 such that

2¡ (¾1
¾2
)2(³¤ ¡ 1) > 2¡ (¾1

¾¤2
)2(³¤ ¡ 1) > 0

for all ¾¤2 < ¾2 < ¾1:

Consequently,

´(») (2.18)

¸
·

(s¡ l)(h¡ s)
(³¤ + 1)(h¡ s) + (³¤ ¡ 1)(s¡ l)

¸ ·
2¡ (¾1=¾2)2(³¤ ¡ 1)

(¾1=¾2)2(h¡ s) + (h¡ l)
¸

>

·
(s¡ l)(h¡ s)

(³¤ + 1)(h¡ s) + (³¤ ¡ 1)(s¡ l)
¸ ·

2¡ (¾1=¾¤2)2(³¤ ¡ 1)
(¾1=¾¤2)2(h¡ s) + (h¡ l)

¸
for all ¾2 such that ¾¤2 < ¾2 < ¾1:

From (2.17) and (2.18), it is clearly true that

lim inf
¾2!¾1

l(¾1; ¾2) > 0:
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2.7 The Value Functions at SPS Equilibria

Suppose that a strategy pro…le » = (»1; »2) is an SPS equilibrium with player

1 as a leader and player 2 as a follower. Then, since player 2 is experimenting less

and free riding on player 1’s experimentation for some range of beliefs, we could

conjecture that the payo¤ of player 2 is greater than that of player 1. We will

prove in this section that this conjecture is indeed true. With this result, LFMSE

can be understood as a simple coordination game. There are only two kinds of

equilibria, and who will have a better payo¤ is determined according to which type

of equilibria they are playing. That is, the player who is allowed to free ride will

have a higher payo¤.

We need the following lemma, which is interesting in itself, to prove the main

result in this section.

Lemma 2.24 Suppose that a strategy pro…le » = (»1; »2) is an SPS equilibrium,

and that »1 6= »2 if and only if p 2 (c1; c2]: Let ui be the value function of player

i when she plays a best response to »¡i; i = 1; 2: Then,

u002(p)[u1(p)¡ f(1¡ »1(p))s+ »1(p)m(p)g]

= u001(p)[u2(p)¡ f(1¡ »2(p))s+ »2(p)m(p)g]

for all p 2 [0; 1]nfc1; c2g:
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Proof . We will prove for the case when player 1 is a leader. The proof for

the case when player 2 is a leader is similar. Suppose that » = (»1; »2) is an

SPS equilibrium with player 1 as a leader and player 2 as a follower, and that

»1(p) 6= »2(p) if and only if p 2 (c1; c2]: Then,

»1 =

(
0 if 0 · p · c1
1 if c1 < p · 1;

and

»2 =

(
0 if 0 · p · c2
1 if c2 < p · 1:

Since ui is the value function for player i;

u1 =

8><>:
s if 0 · p · c1
m+ (1=(r¾21))©u

00
1=2 if c1 < p · c2

m+ (1=r)(1=¾21 + 1=¾
2
2)©u

00
1=2 if c2 < p · 1;

and

u2 =

8><>:
s if 0 · p · c1
s+ (1=(r¾21))©u

00
2=2 if c1 < p · c2

m+ (1=r)(1=¾21 + 1=¾
2
2)©u

00
2=2 if c2 < p · 1:

From this, the statement is clearly true.

Since u00i > 0 for p 2 (c1; 1]nfc2g; we obtain

u1(p)¡ f(1¡ »1(p))s+ »1(p)m(p)g
u001(p)

=
u2(p)¡ f(1¡ »2(p))s+ »2(p)m(p)g

u002(p)

for p 2 (c1; 1]nfc2g: The numerators are the di¤erences between overall optimal

payo¤ and the instant expected payo¤. That is, it measures the gain from addi-

tional information generated by experimenting at equilibrium. The denominators
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are private shadow prices of the information for each player. Hence, at equilibrium,

when information has a positive shadow price for each player, the ratio of the gain

from information to the private shadow price of the information is equalized across

the players.

The following is the main result of this section.

Theorem 2.25 Suppose that a strategy pro…le » = (»1; »2) is an SPS equilibrium

and that »1 6= »2 if and only if p 2 (c1; c2]: Let ui be the value function of player i

when she plays a best response against »¡i; i = 1; 2: Then, ui · u¡i if and only if

» is an SPS equilibrium with player i as a leader and player 3 ¡ i as a follower,

i = 1; 2: The inequality is strict for p 2 (c1; 1):

Proof . We will prove the theorem for the case when player 2 is a leader. The

proof for the case when player 1 is a leader is similar. Suppose that » = (»1; »2) is

an SPS equilibrium with player 2 as a leader and player 1 as a follower. Note that

c2 · b by Proposition 2.6.

We will …rst show that u1 > u2 locally to the right of c1: And then, by

showing that it is impossible for u1(p) = u2(p) for some p such that c1 < p < c2;

we will derive the conclusion that u1 > u2 for every p 2 (c1; 1).

From

u1 = s+
1

r¾22
©
u001
2
;
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and

u2 = m+
1

r¾22
©
u002
2

for p 2 (c1; c2); we obtain

u1 = s+ ¯1f(p) + ¯2g(p);

and

u2 = m+ ^̄1f(p) + ^̄2g(p);

where

f(p) = p¡(³¡1)=2(1¡ p)(³+1)=2;

g(p) = p(³+1)=2(1¡ p)¡(³¡1)=2;

and

³ =

µ
1 +

8r¾22
(h¡ l)2

¶1=2
:

In the above, ¯1; ¯2; ^̄1; and ^̄2 are parameters that will be determined by the

boundary conditions.

Note that f; g > 0 for p 2 (c1; c2]: Therefore, u1(c1) = s implies that ¯1 and

¯2 have opposite signs. Since f is increasing, and g is decreasing, for u1 to be

increasing, it should be that

¯1 < 0; and ¯2 > 0:

From this, it follows that the right derivative of u1 for p = c1 is strictly positive.

The smooth pasting condition for player 2, however, implies that u02 = 0 for p = c1:
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Consequently, u1 > u2 locally to the right of c1:

Now we will show that u1 > u2 for all p 2 (c1; c2):

Suppose there exists a p 2 (c1; c2) such that u1(p) = u2(p): Let ~p be the

in…mum of those p’s. That is, u1 > u2 for p 2 (c1; ~p); and u1 = u2 for p = ~p: From

Lemma 2.24, for p = ~p;

u001(~p)[u2(~p)¡m(~p)] = u002(~p)[u1(~p)¡ s]:

Since s > m(~p); we have

u001(~p) < u
00
2(~p): (2.19)

Since u1 > u2 for p 2 (c1; ~p); and u1 = u2 for p = ~p; and since the value functions

are convex, (2.19) implies that

u01(~p) < u
0
2(~p):

Therefore, there exists c · c2 such that for p 2 (~p; c);

u2 = m+
1

r¾22
©
u002
2

> u1 = s+
1

r¾22
©
u001
2
;

which in turn implies from Lemma 2.24 that u002 > u
00
1 for p 2 (~p; c): That is, u2¡u1

is strictly convex on (~p; c), u2 ¡ u1 > 0 for p 2 (~p; c); and u2 ¡ u1 = 0 for p = ~p:

Hence, it is easy to see that u2 > u1 for all p 2 (c1; c2]:
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Now, for p 2 (c2; 1];

u1 = m+
1

r

µ
1

¾21
+
1

¾22

¶
©
u001
2
;

and

u2 = m+
1

r

µ
1

¾21
+
1

¾22

¶
©
u002
2
:

Thus, for p 2 (c2; 1];

u1 = m+ °1 ~f(p);

and

u2 = m+ °2 ~f(p);

where

~f(p) = p¡(³0¡1)=2(1¡ p)(³0+1)=2;

and

³0 =

µ
1 +

8r

(h¡ l)2(1=¾21 + 1=¾22)
¶1=2

:

Here °i’s are positive parameters. Then, that u2(c2) > u1(c2) implies that °2 > °1;

which again implies that

u002 ¡ u001 = (°2 ¡ °1) ~f 00(p) > 0

for all p 2 (c2; 1]: Recall that by Theorem 2.18 and the smooth pasting condition,

the right and left derivative of u1 and u2 at c2 should be equal to each other. Hence,

overall, u2 ¡ u1 is increasing, strictly convex, and di¤erentiable for p 2 (~p; 1); and

u2 ¡ u1 = 0 at p = ~p; which contradicts the fact that u2 ¡ u1 = 0 at p = 1:
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We’ve shown that u1 > u2 for p 2 (c1; c2): Now we will show that it is

impossible for u1(c1) = u2(c2); which in turn implies that u1 > u2 for all p 2 (c1; 1);

since if u1(c1) > u2(c2); then °1 > °2 so that u1 = m+ °1 ~f > u2 = m+ °2 ~f:

Suppose u1(c1) = u2(c2): Then, °1 = °2; and hence u1 = u2 for all p ¸ c2: At

p = c2; since u1 > u2 for p 2 (c1; c2); u1 = u2 for p 2 (c2; 1]; and since p follows a

Brownian motion so that there is a positive probability that p will fall below c2; it

is impossible that u1(c1) = u2(c2): Contradiction.

In the proof of Theorem 2.25, we showed that if » = (»1; »2) is an SPS

equilibrium with player 2 as a leader and player 1 as a follower, and if »1 6= »2 if

and only if p 2 (c1; c2]; then the right derivative of the value function of player 1,

u1; at p = c1 is strictly positive. Therefore, u01(c1) + u
0
2(c1) > 0: In the analysis

of the Team Problem, however, we showed that u0¤(ĉ) = 0 when ĉ is the cuto¤

point for player 2’s experimentation. Since an SPS equilibrium with player 1 as a

leader and player 2 as a follower is obviously ine¢cient, overall, every equilibrium

in LFMSE is not e¢cient. As u1 + u2 · 2u¤ at both equilibria, we will have less

experimentation than optimal in the neighborhood of c1 at which the leader begins

to experiment.
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2.8 Existence of an SPS Equilibrium

The existence of both kinds of SPS equilibria can be easily shown by a simple

application of Knaster-Tarski’s …xed point theorem. Knaster-Tarski’s …xed point

theorem is for an increasing function de…ned on a partially ordered set. Suppose

that f :W !W is a non decreasing function, whereW is a partially ordered set.

That is, if w1 · w2; w1; w2 2 W, then f(w1) · f(w2): Suppose also that there

exists ~w 2 W such that ~w · f( ~w); and that every linearly ordered chain in W

has a supremum in W. Then, f has a …xed point in W.4

Theorem 2.26 There exist an SPS equilibrium with player 1 as a leader and

player 2 as a follower and an SPS equilibrium with player 2 as a leader and player

1 as a follower in LFMSE.

Proof . Let U be the set of Lipschitz continuous functions u : [0; 1] ! [l; h]

such that 0 · u0 · h ¡ l almost everywhere on [0; 1]; and let S be the set of

simple strategies » : [0; 1] ! [0; 1] with »0; »1 : [0; 1] ! [0; 1] , where »0 = 0 and

»1 = 1 for all p 2 [0; 1]: Here U and S may be interpreted, respectively, as the

space of the value functions and the space of the SPS. Let’s de…ne three functions,

4 For proof, see Dugundji and Granas (1982).
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ºL; º1F ; º2F : U ! S as follows:

ºL(u)(p) =

(
0 if u(p) · s and p < b
1 otherwise,

º1F (u)(p) =

(
0 if (u(p)¡ s)=(s¡m(p)) · (¾1=¾2)2 and p < b
1 otherwise,

and

º2F (u)(p) =

(
0 if (u(p)¡ s)=(s¡m(p)) · (¾2=¾1)2 and p < b
1 otherwise.

Let Ã1 : U2 ! S2 be the function de…ned as

Ã1(u1; u2) =

½
(ºL(u1); º2F (u2)) if ºL(u1) ¸ º2F (u2)
(´L; ´F ) otherwise,

where ´L; ´F 2 S are de…ned as

´L(p) =

(
0 if p 2 [0; (1 + b)=2]
1 if p 2 ((1 + b)=2; 1];

and

´F (p) =

(
0 if p 2 [0; (2 + b)=3]
1 if p 2 ((2 + b)=3; 1]:

Also, let Ã2 : U2 ! S2 be the function de…ned as

Ã2(u1; u2) =

½
(º1F (u1); ºL(u2)) if ºL(u2) ¸ º1F (u1)
(´F ; ´L) otherwise.

Then, the mapping Ã : U2 ! S4 de…ned as Ã(u1; u2) = (Ã1(u1; u2); Ã2(u1; u2)) will

map each pair of value functions into a pair of strategy pro…les, the …rst of which

is an SPS with player 1 as a leader and player 2 as a follower, and the second of

which is an SPS with player 2 as a leader and player 1 as a follower. Note that,

by construction, Ã is increasing.
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Let ¸ : S2 ! U2 be de…ned as ¸(»1; »2) = (u1; u2), where ui is the value

function of player i when she plays a best response to »¡i: And de…ne ¤ : S4 ! U4

as ¤(»1; »2; »3; »4) = (¸(»1; »2); ¸(»3; »4)): Note again that ¤ is increasing by Lemma

2.7.

Let ½1; ½2 : U4 ! U2 be the projection mappings de…ned as follows.

½1(u1; u2; u3; u4) = (u1; u2);

and

½2(u1; u2; u3; u4) = (u3; u4):

Now we are ready to de…ne our main mapping h1; h2 : U2 ! U2 which will be

shown to have a …xed point. Let’s de…ne h1 and h2 as

h1 = ½1 ± ¤ ± Ã;

and

h2 = ½2 ± ¤ ± Ã:

From Theorem 2.21, it is clear that if h1 has a …xed point (u1; u2) such that

Ã1(u1; u2) 6= (´L; ´F ), then there is an SPS equilibrium with player 1 as a leader

and player 2 as a follower. Also it is true that if h2 has a …xed point (u1; u2) such

that Ã2(u1; u2) 6= (´F ; ´L), then there is an SPS equilibrium with player 2 as a

leader and player 1 as a follower.

The conclusion of the theorem follows immediately from Knaster-Tarski’s
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…xed point theorem and Proposition 2.6.

Since Ã;¤; and ½i’s are increasing, the hi are increasing. Moreover, (u; u) ·

hi(u; u) by Proposition 2.4. Hence, by Knaster-Tarski’s …xed point theorem, there

exist …xed points for the hi. Now from Proposition 2.6, it is clear that if (u1; u2)

is a …xed point for h1; then Ã1(u1; u2) 6= (´L; ´F ). Similarly, if (u1; u2) is a …xed

point for h2; then Ã2(u1; u2) 6= (´F ; ´L).

The above proof is also valid for the homogeneity case, i.e. when ¾1 = ¾2:

Therefore, if the number of players in Bolton and Harris (1999) is two, then there

will be asymmetric equilibria in addition to the symmetric equilibrium.

At the symmetric mixed strategy equilibrium in Bolton and Harris (1999),

once the two players begin to choose the risky option, they keep choosing it indef-

initely.5 At an SPS equilibrium, however, the probability of event fp(t) · c; for

some t · Tg is always positive for all T > 0 and for all p(0) > c: Thus, at asym-

metric equilibria, even if the prior belief is high enough that one or both players

do experimentation, there is a positive probability that they will end up with the

safe option, and that they keep choosing it, which is impossible at the symmetric

equilibrium.

We conjecture that in an N-player game with 0 < ¾N < ::: < ¾1, there

are N ! types of asymmetric pure strategy equilibria, each of which has the same

5 See Bolton and Harris (1999), p 363.

63



structure. That is, at each type of equilibria, there exist (i1; i2; :::; iN) which is a

permutation of (1; 2; :::; N) and N cuto¤ points 0 < cN < ::: < c1 < 1 such that

player ik is choosing the risky option if and only if p 2 (ck; 1]:

Lastly, it should not be puzzling much that LFMSE has two asymmetric

equilibria. Since we have focused only on Markov strategies, many other equilibria

may have been ignored. Fully characterizing all the equilibria is, however, certainly

beyond the scope of this chapter.
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Chapter 3

Strategic Experimentation
in Markets

3.1 Introduction

It has long been observed that the existence of informational externality is

often the source of ine¢cient resource allocation. For example, from Bolton and

Harris (1999) and Chapter 2 of this dissertation, we see that the existence of infor-

mational externality will result in less than optimal level of social learning when

people behave strategically. As it is impossible for people to fully appropriate the

informational bene…ts of their experimentations in these models, the production
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of information at equilibrium will be suboptimal.

In this chapter, we will show that price competition a la Bertrand between

…rms can lead to the e¢cient level of social learning in the setting of Bolton and

Harris (1999). Thus, the informational externality Bolton and Harris (1999) study

is of such a kind that could be overcome by introducing a market competition. By

contrast, it will be shown that the informational externality such as we study in

Chapter 2 of this dissertation can’t be remedied by introducing price competition.

In Bolton and Harris (1999), one buyer’s experimentation could be perfectly sub-

stituted by another buyer’s experimentation. In the model of Chapter 2 of this

dissertation, however, due to the di¤erences in the qualities of the information

from each buyer’s experimentation, buyer 2’s experimentation can’t be perfectly

substituted by buyer 1’s experimentation. Hence, unless buyer 1 and 2 have op-

portunities to transfer between them in order to internalize this externality, mere

price competition between …rms will not guarantee e¢ciency.

This chapter is organized as follows. Section 2 describes the game. The

e¢cient allocation will be reported in Section 3. In Section 4, we will show that

if there is a symmetric equilibrium at which the incumbent …rm’s smooth pasting

condition is satis…ed, it is e¢cient. We will then comment on Bergemann and

Välimäki (2000). In Bergemann and Välimäki (2000), they study the same model

independently and conclude that equilibrium allocations are not e¢cient. We will
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argue that their reasoning is incorrect. In Section 5, it will be shown that linear

prices equilibrium exists. In so doing, we resolve the existence problem, and at the

same time, show how to calculate an equilibrium. In Section 6, we show that it is

impossible to achieve e¢cient allocation with heterogeneous buyers.

3.2 A Continuous-Time Market Game

3.2.1 The Model

There are N in…nitely-lived risk-neutral buyers who will be indexed by i =

1; 2; :::; N . There are two …rms selling di¤erentiated products, the incumbent (…rm

I) and the entrant (…rm E). At each time period [t; t + dt), each buyer has a

unit demand at maximum for products of …rm I and E: The ‡ow payo¤ from the

product of …rm I is known to be s: The ‡ow payo¤ from the product of …rm E;

¹; is, however, unknown to all the buyers and sellers at time 0, although ¹ is …xed

at h or l: We will assume that 0 < l < s < h: Buyers and …rms share the common

prior probability of ¹ being h at time 0:

At the beginning of each time period [t; t + dt); both …rms will announce

simultaneously their prices. Given those prices, each buyer will choose the product

of which …rm to buy. Let pI(t) and pE(t) be the prices …rm I and E charge buyers
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at time period [t; t+ dt): Then, the ‡ow payo¤ of buyer i at time period [t; t+ dt)

will be

dvi =

8><>:
(s¡ pI(t))dt if she buys at …rm I

(¹¡ pE(t))dt+ ¾dZi(t) if she buys at …rm E

0 otherwise,
where the dZi(t) are the independent standard Brownian motions for i = 1; 2; :::; N:

Standard Brownian motions could be understood as continuous-time version of ran-

dom walks. To be precise, dZi(t) will be distributed following normal distribution

whose mean and variance are zero and dt; respectively. Thus, the unknown quality

of the product of …rm E can be learned, but not perfectly due to the noises added

to the payo¤s.

Marginal cost of production of each …rm is normalized to be zero. Hence, the

‡ow payo¤ of …rm J 2 fI; Eg at time period [t; t + dt); when 0 · k · N buyers

buy its product, will be

dwJ = kpJ(t)dt:

Buyers and sellers are assumed to maximize the present discounted value

of their payo¤ streams, namely E[
R1
0
re¡rtdvi(t)] for buyer 1 · i · N; and

E[
R1
0
re¡rtdwJ(t)] for …rm J 2 fI; Eg: It will be assumed that at the begin-

ning of the time period [t; t+ dt); all the prices announced by the sellers, decisions

of the buyers’, and payo¤s to all the players in the past are common knowledge.

Therefore, there is no hidden information. The assumption of complete observabil-

ity enables the players to learn not only from his own experimentation, but also
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from other player’s experimentation. Therefore, information about the unknown

quality is a kind of public good, which will be provided when buyers experiment.

3.2.2 Belief, Strategies and Equilibrium

Since there is no hidden information, the buyers and the …rms will have

common posterior belief ¯(t) at each time t; which will be our natural choice

for the state variable. We will focus on symmetric Markov perfect equilibria:

Strategies of buyers and sellers will not depend on payo¤ irrelevant variables. A

pricing strategy of …rm J 2 fI; Eg; pJ , is a measurable function from [0; 1] to

R: Thus, each …rm’s pricing strategy will depend only on the state variable ¯(t):

Buyers’ decisions, however, will depend on the announced prices, too. Hence, an

acceptance policy of buyer i; di = (dIi ; d
E
i ); is de…ned to be a measurable function

from [0; 1] £ R2 to f(0; 0); (0; 1); (1; 0)g: Note that an acceptance policy of buyer

i does not allow him to mix between the two products. As Bertrand competition

will not let buyers mix at equilibrium, there will be no loss of generality, however.

Given a strategy pro…le ((di); pI ; pE); we will use d¡i or p¡J to denote the strategy

pro…les of all the buyers and sellers except buyer i or seller J , respectively. That is,

d¡i and p¡I will stand for ((dj)j 6=i; pI ; pE) and ((di); pE); respectively: A strategy

pro…le ((di); pI ; pE) is a Markov perfect equilibrium if di is an acceptance policy

of buyer i 2 f1; 2; :::; Ng; pJ is a pricing strategy of …rm J 2 fI; Eg; di is a best
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response to d¡i for all i 2 f1; 2; :::; Ng; and if pJ is a best response to p¡J for all

j 2 fI; Eg:

In a discrete-time model, it is di¢cult to describe the posterior beliefs in

a tractable way. By contrast, in a continuous-time model, the law of motion of

¯(t) can be nicely described, which explains the main reason why we are using a

continuous-time model. The following proposition can be proved as Proposition

2.1.

Proposition 3.1 Suppose that di is the acceptance policy of buyer i = 1; 2; :::; N:

Then, conditional on the information available at time t, the change in belief d¯(t)

is distributed normally with mean 0 and variance³PN
i=1 d

E
i

´
¾2

©(¯(t))dt;

where ©(¯) = [¯(1¡ ¯)(h¡ l)]2:

Note that ©(0) = ©(1) = 0: Therefore, once they become sure about ¹; from

that point on, there will be no further change in ¯; which is a common feature

of Bayesian learning. The more accurate the information is, the more radically

the posterior belief will change. As an extreme case, if players could observe ¹

accurately in the period [t; t+ dt); then the posterior at the period [t+ dt; t+2dt)

will be either l or h so that the ratio of the change in the belief to the length of
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time would be in…nity. Hence, the variance would also be in…nite. Overall, the

magnitude of the variance measures the amount of information. It is, then, clear

why we have
PN

i=1 d
E
i in the variance of ¯(t):

3.2.3 Hamilton-Jacobi-Bellman Equations

Due to Proposition 3.1, we can use Itô’s lemma to derive the Hamilton-Jacobi-

Bellman (HJB) equation of buyer i: HJB equation is the dynamic programming

equation in our continuous-time setting.

Let m(¯) = ¯h + (1 ¡ ¯)l be the myopic expected payo¤ from the product

of …rm E when ¹ is believed to be h with probability ¯: Then, the value function

of buyer i will be determined as

ui(¯) = maxfs¡ pI +
³P

j 6=i d
E
j

´
r¾2

©(¯)
u00i (¯)
2

; (3.1)

m(¯)¡ pE +
³
1 +

P
j 6=i d

E
j

´
r¾2

©(¯)
u00i (¯)
2

g:

The HJB equation consists of two parts. The …rst portions, s¡ pI and m(¯)¡ pE;

represent the instant expected ‡ow payo¤. The expected future bene…ts from the

extra information about the unknown quality are³P
j 6=i d

E
j

´
r¾2

©(¯)
u00i (¯)
2

and ³
1 +

P
j 6=i d

E
j

´
r¾2

©(¯)
u00i (¯)
2

:
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As the portion of the variance part measures the amount of information that will

be generated from buyers’ experimentations, we could interpret u00i (p) as shadow

price of information.

Similarly, the HJB equation for …rm J will be

¼J(¯) = max
pJ
fpJ

NX
i=1

dJi +

³PN
i=1 d

E
i

´
r¾2

©(¯)
(¼J)00(¯)

2
g:

As seen in Chapter 2, equilibria of this game will be determined by a system of

second order di¤erential equations of (ui)i; ¼I ; and ¼E with appropriate boundary

conditions. In the remainder of this paper, for notational convenience, we will

suppress the dependence of u1; u2; ¼I ; ¼I ;m; and © on ¯ as long as there is no risk

of confusion.

3.3 E¢cient Allocation

As a benchmark for our equilibrium analysis, we will investigate the team

problem …rst. In the team problem, a social planner will maximize the average

payo¤ of all the players. Since payments from the buyers to the sellers will be

cancelled out, the social planner’s problem is equivalent to maximizing the average

payo¤ of the buyers when the two products are freely available. It is easy to see

that this problem will be an optimal stopping problem. Therefore, the e¢cient

allocation will be represented by a single cuto¤ ^̄; all the buyers should choose
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the product of …rm E if and only if ¯ 2 (^̄; 1]: Let u¤ be the value function of

the social planner’s problem when the two products are for free. Thus, Nu¤ will

be the maximized sum of payo¤s of all the players. For the proof of the following

result, see Bolton and Harris (1999).

Theorem 3.2 The e¢cient cuto¤ is

^̄ =
(s¡ l)(¸¡ 1)

(h¡ l)(¸¡ 1) + 2(h¡ s) ;

where

¸ =

s
1 +

8r¾2

N(h¡ l)2 :

The value function of the social planner’s problem is

u¤ =

(
s for ¯ 2 [0; ^̄]

m+ a¯
1
2
¡ 1
2
¸(1¡ ¯) 12¸+ 1

2 for ¯ 2 (^̄; 1];
where

a =
2(h¡ s)
¸¡ 1

Ã
^̄

1¡ ^̄

!1
2
+ 1
2
¸

:

Note that ^̄ < ¯M where ¯M is the myopically break-even point such that

m(¯M) = s: As the information about the unknown quality ¹ is valuable, at

optimal allocation, social learning should occur even if myopically it may not be

worth choosing the product of …rm E: As we noted before, u00¤ could be interpreted
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as shadow price of information. By direct calculation, it can be seen that u00¤(¯) > 0

for ¯ 2 (^̄; 1):

3.4 Symmetric Equilibria

Due to price competition a la Bertrand, multiplicity of equilibria is inevitable.

Therefore, to narrow down the set of equilibria, we need to put some restrictions on

it. As we do not have a satisfactory re…nement concept for continuous-time games

yet, we will put only the weakest restrictions. We require that whenever players

cease to learn, the equilibria should be Nash equilibria in undominated strategies

in the corresponding static game. Therefore, for instance, if ¯ = 0; i.e. the quality

of the product of …rm E is believed to be l for sure, then we will choose as the

equilibrium (pI ; pE) = (s ¡ l; 0) with all the buyers choosing …rm E: We believe

that undominatedness in static case is the minimum that should be satis…ed by

any attempt to re…ne equilibria of continuous-time games.

Under this minimum restriction, we will show in the following that if a sym-

metric equilibrium is characterized by a cuto¤ ¯¤ and if the value function of the

incumbent is smooth at the cuto¤; then the equilibrium cuto¤ ¯¤ is identical with

^̄: Therefore, all the symmetric equilibria of this type will be e¢cient. Bertrand

competition adjust prices so that the resulting social learning is to the adequate
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amount.

3.4.1 Equilibrium Prices

Suppose that there is a symmetric equilibrium with a cuto¤ ¯¤ such that all

the buyers will choose …rm E if and only if ¯ 2 (¯¤; 1]: Let ¼J and u be the value

function of …rm J 2 fI; Eg and the common value function of the buyers at this

symmetric equilibrium, respectively.

Then, we will have from (3.1)

u = m¡ pE + N

r¾2
©
u00

2

¸ s¡ pI + N ¡ 1
r¾2

©
u00

2
:

for ¯ 2 (¯¤; 1]: At equilibrium, price competition between two …rms will force

the above inequality to hold with equality, which implies that the opportunity

cost of choosing the product of …rm E; (s ¡ pI) ¡ (m ¡ pE); will be equal to the

informational bene…t,
1

r¾2
©
u00

2
. By rearranging terms, we have

pI = pE + (s¡m)¡ 1

r¾2
©
u00

2
: (3.2)

In a similar way, for ¯ 2 (¯¤; 1]; we have

¼I =
N

r¾2
©
(¼I)00

2

¸ NpI ;
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and

¼E = NpE +
N

r¾2
©
(¼E)00

2

¸ 0:

Thus,

1

r¾2
©
(¼I)00

2
¸ pI

pE +
1

r¾2
©
(¼E)00

2
¸ 0:

By combining these two inequalities with (3.2), we have the following necessary

condition for an equilibrium price pI :

(s¡m)¡ 1

r¾2
©
(¼E)00

2
¡ 1

r¾2
©
u00

2
· pI · 1

r¾2
©
(¼I)00

2
: (3.3)

3.4.2 E¢ciency

If ¯ 2 [0; ¯¤]; there will be no experimentation. Hence, from undominated-

ness, we obtain

pI = s¡m(¯)

pE = 0

as the equilibrium prices. It is immediate that u(¯) = m(¯) for ¯ 2 [0; ¯¤]: The

payo¤s of the buyers will be exactly equal to the value of their outside options. It
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is also clear that

¼I = N(s¡m)

¼E = 0

for ¯ 2 [0; ¯¤]:

To …nd an equilibrium, we have to solve a system of second order di¤erential

equations for ¯ 2 (¯¤; 1]. Boundary conditions for this system are from the value

matching conditions and the smooth pasting conditions. The value matching con-

ditions are simply conditions about continuity of the value functions at the cuto¤

point. The smooth pasting conditions are a kind of …rst order conditions for our

stochastic dynamic programming problem, which require that the left derivative

and the right derivative of each value function at the cuto¤ point should be the

same.

By direct substitution, it can be seen that the general solution of the following

di¤erential equation

¼I =
N

r¾2
©
(¼I)00

2

will be

¼I = c1¯
1
2
¡ 1
2
¸(1¡ ¯) 12¸+ 1

2 + c2¯
1
2
¸+ 1

2 (1¡ ¯) 12¡ 1
2
¸;

where

¸ =

s
1 +

8r¾2

N(h¡ l)2 :
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Since ¼I is bounded for all ¯ 2 (¯¤; 1]; we can see that c2 = 0: Thus,

¼I = c1¯
1
2
¡ 1
2
¸(1¡ ¯) 12¸+ 1

2 :

The value matching condition and the smooth pasting condition for …rm I are

¼I(¯¤) = N(s¡m(¯¤)) (3.4)

(¼I)0(¯¤) = [N(s¡m(¯¤))]0 = N(l ¡ h):

Therefore, two unknowns, c1 and ¯
¤; will be determined from the above boundary

conditions of …rm I: It can be shown that the equilibrium cuto¤ ¯¤ coincides with

the socially e¢cient cuto¤ level.

Theorem 3.3 If there is a symmetric equilibrium at which the smooth pasting

condition of the incumbent is satis…ed, it is e¢cient.

Proof . Note that

(¼I)0 =
¼I

2

µ
1¡ ¸
¯

¡ 1 + ¸
¯

¶
:

Therefore,

(¼I)0(¯¤) =
¼I(¯¤)
2

µ
1¡ ¸
¯¤

¡ 1 + ¸
¯¤

¶
=

N(s¡m(¯¤))
2

µ
1¡ ¸
¯¤

¡ 1 + ¸
¯¤

¶
:

From the smooth pasting condition (3.4), we have

(s¡m(¯¤))
2

µ
1¡ ¸
¯¤

¡ 1 + ¸
¯¤

¶
= (l ¡ h):
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It is immediate that

¯¤ =
(s¡ l)(¸¡ 1)

(h¡ l)(¸¡ 1) + 2(h¡ s) =
^̄:

The intuition behind this e¢ciency result is rather simple. In the social

planner’s problem, the opportunity cost of buyers’ choosing the risky option is

N(s¡m(¯)): As ¼I(¯) = N(s¡m(¯)); the private cost of the incumbent …rm for

letting buyers choose …rm E will be exactly equal to the social opportunity cost.

Therefore, in the pro…t maximization problem of …rm I, the social opportunity

cost is fully re‡ected. As the results of buyers’ experimentation shift ¯ up or

down, the resulting social pessimism or optimism about the product of …rm E

will be fully re‡ected in pE: Thus, when buyers are buying at …rm E; the sum

of the informational bene…ts for buyers and that for …rm E will be zero. Hence,

when …rm E is selling, the total social informational bene…t will be equal to the

informational bene…t for …rm I who can fully observe buyers’ experimentation.

Indeed, from ¯¤ = ^̄ and (3.4), we can see that

c1 =
2N(h¡ s)
¸¡ 1

Ã
^̄

1¡ ^̄

! 1
2
+ 1
2
¸

:

Hence,

N

r¾2
©
(¼I)00

2
=
N

r¾2
©
u00¤
2
:

In summary, since …rm I’s private cost and bene…t of letting buyers experiment are
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equal to the social opportunity cost of and the social informational bene…t from

buyers’ experimentation, …rm I’s optimal choice will be identical with socially

optimal timing.

It is also notable that for the e¢ciency result, we do not need …rm E: What

is crucial is that the private cost of …rm I for letting buyers to choose the risky

option is equal to the social cost. Therefore, even in the case where buyers have

free access to the risky product whereas the safe option is provided by …rm I; we

could still obtain the e¢ciency result. Similarly, it can be shown that we could

achieve the e¢cient allocation with only …rm E selling the risky product, while

the buyers have free access to the safe one.

3.4.3 Comments on Bergemann and Välimäki (2000)

In an earlier but independent work, Bergemann and Välimäki (2000) analyze

the same game with ours. They conclude that there will be excessive experimen-

tation at the symmetric equilibrium. Their paper is, however, ‡awed by a serious

mistake.

To overcome the multiplicity of equilibria, they introduce the concept of cau-

tious strategies in their paper. To be brief, cautious strategies are those satisfying

the following relation:

pI =
1

r¾2
©
(¼I)00

2
:
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By focusing on cautious equilibrium, however, they kill one degree of freedom that

is indispensable to satisfy the two boundary conditions for ¼E: Since (3.3) is the

main source for multiplicity of equilibria, they seem to attempt to overcome this

problem by choosing a speci…c pI : In so doing, however, they throw away too

much so that they can’t have enough degree of freedom to satisfy all the boundary

conditions. For instance, at the state they claim to be an equilibrium, we can

show that the smooth pasting condition for …rm I is violated. In private corre-

spondence, they argue that smooth pasting condition is not a necessary condition

for optimality for the incumbent since the payo¤ from the stopped process of the

incumbent is kinked at the cuto¤ of the cautious equilibrium. This observation

is correct. We do not know yet the general necessary conditions for optimality in

case the payo¤ from the stopped process is not di¤erentiable, which is the reason

why we have an additional assumption about the smoothness of the value function

of the incumbent in Theorem 3.3. Without a doubt, however, in order to claim

that a state is an equilibrium, we ought to show explicitly that all the people in

the model are indeed optimizing. Bergemann and Välimäki mistakenly identify

equation (18) with (19) in their paper to conclude that they can omit to check

the optimality conditions for the incumbent. This is a pity, since still we do not

know if the cautious equilibrium in Bergemann and Välimäki (2000) is really an

equilibrium.
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3.5 Linear Prices

Now we have two more di¤erential equations:

u = m¡ pE + N

r¾2
©
u00

2

¼E = NpE +
N

r¾2
©
(¼E)00

2
:

We know from Theorem 3.3, all the symmetric equilibria are e¢cient if the value

function of the incumbent is smooth. Therefore, we do not have to solve both

of the above two equations in this case. When we have ¼E; from the accounting

identity

¼I + ¼E +Nu = Nu¤;

we can get u as a residual. Since the value matching condition and the smooth

pasting condition for …rm E are

¼E(¯¤) = 0

(¼E)0(¯¤) = 0;

and since u¤, the solution to the Team problem, will satisfy its boundary conditions

u¤(¯¤) = s

u0¤(¯
¤) = 0;

the value function u obtained as a residual will automatically satisfy its own value
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matching condition and smooth pasting condition, which are

u(¯¤) = m(¯¤)

u0(¯¤) = h¡ l:

With …xed pE; pI will be determined by (3.2). Therefore, to …nd an equilib-

rium is to …nd a pricing policy pE such that the resulting ¼E and ¼I will satisfy

all the boundary conditions while pI determined by (3.2) will satisfy (3.3). Since

the binding restrictions for pE are local (it is required only at ¯¤); there will be

plethora of equilibria.

In this section, we will show that there is a very simple pricing policies to

support the equilibrium cuto¤: A selling …rm’s price will be linear function of the

posterior belief ¯: We have already chosen

pI = s¡m(¯)

as the equilibrium price of …rm I for ¯ 2 [0; ¯¤]: Thus, it su¢ces to show the

existence of equilibrium pE which is a linear function of ¯ for ¯ 2 (¯¤; 1]:

Theorem 3.4 There is a symmetric equilibrium where

pE = m(¯)¡ s

for ¯ 2 (¯¤; 1]: There is no other equilibrium policies where pE is a linear function

of ¯ for ¯ 2 (¯¤; 1]:
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Proof . Suppose that pE = a + b¯ is an equilibrium price. Due to the undomi-

natedness in static Bertrand competition, we have

pE(1) = a+ b = h¡ s:

Since

¼E = NpE +
N

r¾2
©
(¼E)00

2

for ¯ 2 (¯¤; 1]; and since ¼E is bounded, the general solution for ¼E will be

¼E = N(h¡ s) +Nb(¯ ¡ 1) + c¯ 1
2
¡ 1
2
¸(1¡ ¯) 12¸+ 1

2 :

Thus, ¼E will have two parameters to determine, and these will be …xed by the

following conditions.

¼E(¯¤) = 0

(¼E)0(¯¤) = 0:

The result is

b = h¡ l

c =
2N(h¡ s)
¸¡ 1

µ
¯¤

1¡ ¯¤
¶ 1

2
+ 1
2
¸

= Na:

Recall that ¯¤ is chosen already so that the optimality condition for …rm I is

satis…ed. Also, by de…ning u as

u = u¤ ¡ 1

N
(¼I + ¼E);

it can be seen that the optimality conditions for the buyers are automatically
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satis…ed.

To verify that this is indeed an equilibrium, we have to show that (3.3) is

not violated. Since

pI = pE + (s¡m)¡ 1

r¾2
©
u00

2

= ¡ 1

r¾2
©
u00

2
;

it su¢ces to show that

¡ 1

r¾2
©
u00

2
· 1

r¾2
©
(¼I)00

2
:

From Theorem 3.3, it can be shown that

¼I = Na¯
1
2
¡ 1
2
¸(1¡ ¯) 12¸+ 1

2 :

From

u = u¤ ¡ 1

N
(¼I + ¼E);

we have

u = s¡ a¯ 1
2
¡ 1
2
¸(1¡ ¯) 12¸+ 1

2 :

Therefore,

(¼I)00 = N(¡u00) > ¡u00:

In the above proof, we have shown that if the price of the selling …rm is linear

in ¯; then for ¯ ¸ ¯¤;

¼I = Naf(¯)
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¼E = N [m(¯)¡ s] +Naf(¯)

u = s¡ af(¯);

where

f(¯) = ¯
1
2
¡ 1
2
¸(1¡ ¯) 12¸+ 1

2 :

Therefore,

1

r¾2
©
(¼E)00

2
+
N

r¾2
©
u00

2
= 0:

That is, the sum of the informational bene…t for …rm E and the informational

bene…t of all buyers will always be zero when …rm E is selling. This again veri…es

our intuition in Section 3.4.2.

3.6 Heterogeneous Buyers

Instead of N homogeneous buyers, suppose that we have 2 buyers who have

di¤erent abilities to evaluate the uncertain quality of the product of …rm E: More

precisely, buyer i’s instant ‡ow payo¤ dvi is assumed to be

dvi =

8><>:
(s¡ pI(t))dt if she buys at …rm I

(¹¡ pE(t))dt+ ¾idZi(t) if she buys at …rm E

0 otherwise,

where 0 < ¾2 < ¾1: Hence, buyer 2’s experimentation will provide more precise

information about the true quality of the product of …rm E: In fact, this is the

same model we study in Chapter 2 except that two options are now being sold
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by two competing …rms. From Proposition 2.1, it is immediate that d¯(t) will be

distributed normally with mean 0 and variance

(
dE1
¾21
+
dE2
¾22
)©(¯(t))dt:

In this section, we will show that unlike the case of homogeneous buyers it is

impossible to achieve the e¢cient allocation.

We will allow the possibility of price discrimination. Thus, a pricing strategy

of …rm J 2 fI; Eg is now de…ned as pJ = (pJ1 ; pJ2 ); where pJi is the price that …rm

J charges buyer i: Then, buyer 1’s HJB equation will be

u1 = maxfs¡ pI1 +
dE2
r¾22

©
u001
2
;m¡ pE1 +

1

r
(
1

¾21
+
dE2
¾22
)©
u001
2
g:

Price competition between two …rms will make the two terms in max operator

equal to each other at equilibrium. Hence,

pE1 = m¡ s+ pI1 +
1

r¾21
©
u001
2
: (3.5)

Similarly, from buyer 2’s HJB equation, we have

pE2 = m¡ s+ pI2 +
1

r¾22
©
u002
2
: (3.6)

What (3.5) and (3.6) imply is simply that private opportunity cost of choosing the

risky option is equal to the private informational bene…t from experimentation,

which, obviously, ought to be true at equilibrium.
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HJB equations for …rm I and E will be

¼I = max
pI1;p

I
2

fpI1 + pI2; pI1 +
1

r¾22
©
(¼I)00

2
;

pI2 +
1

r¾21
©
(¼I)00

2
;
1

r
(
1

¾21
+
1

¾22
)©
(¼I)00

2
g;

and

¼E = max
pE1 ;p

E
2

f0; pE2 +
1

r¾22
©
(¼E)00

2
;

pE1 +
1

r¾21
©
(¼E)00

2
; pE1 + p

E
2

1

r
(
1

¾21
+
1

¾22
)©
(¼E)00

2
g:

Now we will prove that it is impossible to obtain e¢cient allocation at equi-

librium.

Theorem 3.5 When buyers are heterogeneous, there is no equilibrium which

is e¢cient.

Proof . With (3.5) and (3.6), the HJB equation of …rm E will be

¼E = max
pE1 ;p

E
2

f0;m¡ s+ pI2 +
1

r¾22
©
u002
2
+

1

r¾22
©
(¼E)00

2
;

m¡ s+ pI1 +
1

r¾21
©
u001
2
+

1

r¾21
©
(¼E)00

2
;

2(m¡ s) + pI1 + pI2 +
1

r¾21
©
u001
2
+

1

r¾22
©
u002
2
+
1

r
(
1

¾21
+
1

¾22
)©
(¼E)00

2
g:

We know from the analysis of Team problem in Chapter 2 that the e¢cient al-

location will be represented by two cuto¤s 0 < ¯2 < ¯1 < 1 such that buyer i

selects the product of …rm E if and only if ¯ > ¯i: Hence, suppose that we have
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an equilibrium with two cuto¤s 0 < ¯02 < ¯
0
1; and that buyer i selects the product

of …rm E if and only if ¯ > ¯0i: This implies that

the second term in …rm I’s HJB equation

? the last term in …rm I’s HJB equation

if and only if

the second term in …rm E’s HJB equation

? the last term in …rm E’s HJB equation.

Therefore, the cuto¤ ¯01 will be determined by comparing

1

r¾21
©

µ
u001 + (¼

I)00 + (¼E)00

2

¶
and

s¡m:

Similarly, the cuto¤ ¯02 will be determined by comparing

1

r¾22
©

µ
u002 + (¼

I)00 + (¼E)00

2

¶
and

s¡m:

In the social planner’s problem, however, we compare the social informational

bene…t, which is

1

r¾2i
©

µ
u001 + u

00
2 + (¼

I)00 + (¼E)00

2

¶
;
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with (s¡m) to determine ¯i: The value functions of both players can be shown to

be concave as in Chapter 2. Thus, u00i 6= 0 so that the equilibrium allocation will

not be e¢cient.

Unlike the homogeneous case, price competition will not guarantee e¢ciency

here. In the homogeneous case, one buyer’s experimentation could be perfectly

substituted with another buyer’s. In the heterogeneous case, however, due to the

di¤erences in the qualities of the information their experimentations will generate,

buyer 2’s experimentation can only partially be substituted with buyer 1’s. Hence,

without having opportunities for buyer 1 and buyer 2 to sign a contract in order

to internalize this externality, it is impossible for market equilibria to be e¢cient.
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Chapter 4

Existence of Pure Markov
Strategy Equilibrium in
Discrete-Time Multi-Player
Multi-Armed Bandit Prob-
lems

4.1 Introduction

In Chapter 2 and 3, we analyze strategic experimentation with continuous-
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time models, even though it is still an open question how to generally set up

continuous-time multi-player multi-armed bandit problems. Most di¢culties are

around the notion of strategies. Nevertheless, in the models we use in Chapter

2 and 3, we could represent the law of motion of the posterior in a closed form,

which explains why we adopt continuous-time models in spite of all the technical

di¢culties.

In this chapter, we turn to discrete-time models. Unlike continuous-time

models, we can provide a general setting for multi-player multi-armed bandit prob-

lems in discrete-time set up. We will assume perfect observability. That is, at any

period m, all the previous selections of all the players and the results of their

choices are commonly known to all the players. Therefore, the players will share

the same information about the k alternatives, and thus, hidden information will

not be an issue. Under this assumption, we will generalize Section 2.2 in Berry

and Fristedt (1985) to n player case. Then, we will show that there exists pure

Markov strategy equilibria.

This chapter is organized as follows. General setting is described in Section

2. Best response is de…ned and shown to be non-empty in Section 3. In Section

4, we will show that value functions are continuous in other players’ strategies.

Existence of pure Markov strategy equilibrium is proved in Section 5.
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4.2 General Setting

There are n players. Each of them has k alternatives to select at each time

t = 1; 2; ::: . If player i selects j-th option at t = m, his payo¤ will be Xi
j;m; which

is a random variable. The distribution of fX i
j;mg is not known to any player at

t = 0:We assume that the players have common prior belief about fXi
j;mg at t = 0:

We also assume that fX i
j;mg are independent, and that the distribution of X i

j;m

is equal to that of Xi0
j0;m0 if and only if j = j0: Hence, each player will be in an

identical situation, and his payo¤ relevant variable will not be directly in‡uenced

by other players’ actions. The actions of other players will have e¤ects on player

i’s decision not because his payo¤ will vary according to their choices, but because

he might get some information about the uncertain alternatives by observing their

selections and the results of their decisions.

Let D represent the space of probability distributions on R; the set of real

numbers: We will use the topology of convergence in distribution on D. That is,

with Qn; Q 2 D, Qn ! Q as n ! 1 if and only if
R
R
hdQn !

R
R
hdQ for all

bounded continuous function h on R: The space of ordered k-tuples of D, Dk, will

be considered to have the product topology arising from the topology on D. The

coordinate Qj of Q = (Q1; Q2; :::; Qk) 2 Dk is interpreted as the true but unknown

distribution governing the payo¤ of j-th alternative. The space of probability

distributions on Dk is D(Dk): The common prior belief about Q will be described
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by an element of D(Dk): We will use the topology of convergence in distribution

on D(Dk).

Now we will de…ne the probability space : Let  be de…ned as

 = Dk £¦ni=1¦kj=1¦1m=1(0; 1):

The probability measure P on  is the product of a member ofD(Dk) and Lebesgue

measure on each unit intervals. We can denote an element of  as

! = (Qi; 1 · i · k;!ij;m; 1 · i · n; 1 · j · k;m = 1; 2; :::);

where each Qi 2 D and each !ij;m 2 (0; 1): Let the random variable X i
j;m; the

payo¤ that player i will get if he selects j-th option at t = m; be de…ned as

X i
j;m(!) = Q

¡1
j (!

i
j;m);

where Q¡1j is the usual right continuous inverse function of Qj: The structure of 

re‡ects the idea that the payo¤ of each option is determined when ! 2  is …xed

whether or not they are observed. For player i to select j-th alternative at t = m is

to get to observe the value X i
j;m(!): Note that fX i

j;mg are independent conditional

on (Q1; Q2; :::; Qk):

When a player selects some option, all the information that will be relevant

later on is which alternative he selects and what his payo¤ from that option is.

Thus, his experimentation can be summarized by e 2 E; where

E = f(e1; e2) : e1 2 f1; 2; :::; kg; e2 2 Rg:
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We will equip E with the measure ¹ de…ned as follows: For all i 2 f1; 2; :::; kg;

and for all Borel subset A ½ R;

¹(i; A) = ¹i(A);

where ¹i is the measure induced byQi on R: One shot experimentation of n players

will be represented by a member of En:We will equip En with the product measure

arising from ¹: Let Hm be the set of histories at the beginning of period m: Hence,

Hm = E
n(m¡1): Let H1 be de…ned as ?: A player i’s strategy at period m, ¿ im; is a

measurable mapping from Hm into ¢; where ¢ is the (k¡ 1)-dimensional simplex

with a measure induced from Lebesgue measure on Rk¡1:

¢ = f(p1; p2; :::; pk) 2 Rk :
kX
i=1

pi = 1; pj ¸ 0 for all j = 1; 2; :::; kg:

A pure strategy of player i at period m is a player i’s strategy which maps Hm

into vertices of ¢: A strategy of player i ¿ i = (¿ i1; ¿
i
2; :::) is de…ned as a collection

of player i’s strategies at each period. ¿ i is a pure strategy if all the ¿ im are pure.

A strategy pro…le ¿ = (¿ 1; :::; ¿n) is a collection of strategies of all the players, and

it is pure if all the ¿ i are pure. Following convention, we will use the notation

¿ = (¿ i; ¿¡i) to decompose ¿ into player i’s strategy and all the other players’

strategies. Let T be the set of strategies of each player. Hence, T n will be the set

of all the strategy pro…les.

Let Zim be the realized payo¤ of player i at period m; which will depend on

95



the strategy pro…le the players are adopting. Suppose for the time being that ¿ is

a pure strategy pro…le. Then, Zim are de…ned recursively as

Zi1 = Xi
¿ i1(?);1

Z1 = (Z11 ; :::; Z
n
1 )

Zim = Xi
¿ im(Z1;:::;Zm¡1);m for m > 1;

where as an abuse of notation, we use ¿ im(Z1; :::; Zm¡1) to denote player i’s selection

at period m; which could be justi…ed by the observation that, given ¿ ; knowing all

the values of (Z1; :::; Zm¡1) is equivalent to knowing the history at period m: From

the de…nition, it is clear that Zim is dependent on ¿ : For notational convenience,

however, we will suppress the dependence of Zim on ¿ as long as there is no risk of

confusion: Player i’s payo¤ when a strategy pro…le ¿ is played is

Ei¿ (
1X
m=1

®mZ
i
m);

where A = (a1; ®2; :::) is the sequence of discount factors and the subscript ¿ repre-

sents the dependence of the expectation on ¿ : The above de…nition will generalize

to the case when ¿ is not pure. If ¿ is not a pure strategy pro…le, then it will be a

mixture of pure strategy pro…les. The payo¤ will be then the average of the each

payo¤ from the constituting pure strategy pro…les.
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4.3 Best Responses

Let G be the common prior that the players have at the beginning of the

game. Let the value function of player i given ¿¡i; V i(G; ¿¡i); be de…ned as

V i(G; ¿¡i) = sup
¿ i
Ei¿ (

1X
m=1

®mZ
i
m): (4.1)

Assumption 4.1 Each element ®m of the discount sequence A is nonnegative,

and
P1

m=1 ®m <1:

Assumption 4.2 Each component Qi of (Q1; Q2; :::; Qk) 2 Dk has …nite …rst

absolute moment with G-probability one, and that this moment has …nite G-

expectation.

The previous assumptions guarantee that V i(G; ¿¡i) is bounded for all G and

¿¡i:6 To further our analysis, we need one more technical result. Since the players

keep updating their beliefs as they get to observe the experimentations at each

period, we want this updating process measurable. A modi…cation of Theorem

V.8.1 in Parthasarathy (1967) and Lemma 2.2.1 in Berry and Fristedt (1985) will

give us what we need. Since we are using D(Dk) as the set of state variables, all

of these technicalities are unavoidable.

6 This could be proved in a similar way as Theorem 2.5.1 is proved in Berry and Fristedt (1985).
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Proposition 4.3 For all c = (c1; :::; cn) 2 f1; 2; :::; kgn; there exists a measur-

able function fc : Rn £D(Dk)! D(Dk) such that for every Borel set D 2 Dk;

fc(X
1
c1;1
(!); :::; Xn

cn;1(!);G)(D)

= P (D £¦ni=1¦kj=1¦1m=1(0; 1)jX1
c1;1
; :::; Xn

cn;1)(!) a.e. !:

If player i selects j-th option at t = 1; (Z1
¿11(?);1

; :::; Zij;1; :::; Z
1
¿n1 (?);1

) will be

the outcome: We will denote the common random posterior at the beginning of

period 2 as G(1);j; where superscript j indicates that player i selected j-th option

previously. Recall that the updating process is measurable. Then, it is not di¢cult

to see that

V i(G; ¿¡i) = sup
¿ i
Ei¿ (

1X
m=1

®mZ
i
m)

= _kj=1[®1E(X i
j;1) + sup

¿ i1(?)=j
E¿ (

1X
m=2

®mZ
i
m)]

= _kj=1[®1E(X i
j;1) +E

¡
V i(G(1);j; ¿¡i)

¢
]:

Now we will de…ne the best response correspondence of player i:

De…nition 4.4 Player i’s best response correspondence Bi : T n¡1 ! 2T

is de…ned as

Bi(¿¡i) = f¿ i 2 T : V i(G; ¿¡i) = Ei(¿ i;¿¡i)(
1X
m=1

®mZ
i
m)g:
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Lemma 4.5 Player i’s best response correspondence Bi is non-empty for all

¿¡i 2 T n¡1 and for all i:

Proof . We will construct ¿̂ i 2 Bi(¿¡i) by induction as follows. Let ¿̂ i1(?) be

the smallest j such that

V i(G; ¿¡i) = ®1E(X i
j;1) +E

¡
V i(G(1);j; ¿¡i)

¢
:

Let G(1) be the random posterior at period 2. Then, we have

V i(G; ¿¡i) = E¿̂
¡
®1Z

i
1 + V

i(G(1); ¿¡i)
¢
;

where the subscript ¿̂ indicates that the expectation is dependent on ¿̂ i1 and ¿
¡i:

After G(n) and ¿̂ in are de…ned, ¿̂
i
n+1 will be de…ned similarly. By induction, we will

have

V i(G; ¿¡i) = E¿̂

Ã
nX

m=1

®mZ
i
m + V

i(G(n); ¿¡i)

!
:

The proof will be completed by showing that

lim
n!1

E¿̂ (
1X

m=n+1

®mZ
i
m ¡ V i(G(n); ¿¡i)) = 0:

The argument is standard and we will omit the detail.7

We used the …niteness of the set of the alternatives in the proof of Lemma

4.5 in an essential way. As a matter of fact, if the set of the alternatives is not

…nite, optimal policies may not exist. Indeed, Easley and Kiefer (1989) shows that

if the set of alternatives are uncountable, optimal policies may not exist even in

7 For example, see p.44, Berry and Fristedt (1985).
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one-player case.

In the proof of Proposition 4.5, we constructed a best response which is a

pure strategy. Hence,

Proposition 4.6 Against every ¿¡i 2 T n¡1; there exists at least one pure

strategy best response for player i.

4.4 Value Functions

In general, player i’s value function V i(G; ¿¡i) is not a continuous function

in G:8 In the following special case, however, V i(G; ¿¡i) will be continuous in G:

Lemma 4.7 Suppose that for some G 2 D(Dk);

G(1);n =
X
c

®nc fc(X
1
c1;1
; :::; Xn

cn;1;G);

and

G(1) =
X
c

®cfc(X
1
c1;1
; :::; Xn

cn;1;G);

where fc is the function de…ned in Proposition 4.3, the summations are taken over

all possible c 2 f1; 2; :::; kgn; and Pc ®
n
c =

P
c ®c = 1: If ®

n
c ! ®c as n!1 for

all c, then for all ¿¡i;

V i(G(1);n; ¿¡i)! V i(G(1); ¿¡i)

8 See Example 2.5.1 in Berry and Fristedt (1985).
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as n!1:

Proof . Note that

V i(G(1);n; ¿¡i) = sup
¿ i
E¿;G(1);n

Ã 1X
m=1

®mZm

!

= sup
¿ i

X
c

®ncE¿

Ã 1X
m=1

®mZmjX1
c1;1
; :::; Xn

cn;1

!
;

where the summations are taken over all possible c 2 f1; 2; :::; kgn: Likewise,

V i(G(1); ¿¡i) = sup
¿ i

X
c

®cE¿

Ã 1X
m=1

®mZmjX1
c1;1
; :::; Xn

cn;1

!
:

Hence, it is clear that ®nc ! ®c for all c implies that V i(G(1);n; ¿¡i)! V i(G(1); ¿¡i):

Now we turn to the set of strategies. Given ¿ = (¿ 1; ¿ 2; :::) and ¿ 0 =

(¿ 01; ¿
0
2; :::); recall that ¿m and ¿

0
m areR

k valued measurable functions. The distance

between ¿m and ¿ 0m; dm(¿m; ¿
0
m); is de…ned as

dm(¿m; ¿
0
m) = max

1·j·k

Z
j¿m;j ¡ ¿ 0m;jj;

where ¿m;j and ¿ 0m;j are j-th coordinate of ¿m and ¿
0
m; respectively. Next, we will

de…ne a metric on T . The distance between strategy pro…les ¿ and ¿ 0; d(¿ ; ¿ 0), is

de…ne as

d(¿ ; ¿ 0) =
1X
m=1

2¡mdm(¿m; ¿ 0m):

Therefore, d(¿n; ¿) ! 0 as n ! 0 is equivalent to L1 convergence of each compo-

nent of ¿n to the corresponding component of ¿ : If ¿nm ! ¿m in L1; there exists a
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subsequence of ¿nm which will converge to ¿m almost surely. Therefore, ¿m will also

be a strategy at period m: From this observation, it is clear that T is a complete

metric space. For strategy pro…les ¿ ; ¿̂ 2 T n¡1( or T n ), we will use the product

metric arising from d on T . For example, for ¿ = (¿ 1; :::; ¿n¡1); ¿̂ = (¿̂ 1; :::; ¿̂n¡1) 2

T n¡1

d(¿ ; ¿̂) = max
i
d(¿ i; ¿̂ i):

Changes in ¿¡i do not have direct e¤ects on the instant payo¤ of player i at

each stage; since ¿¡i only determines the law by which player i will obtain extra

information. Thus, we would conjecture that the value function of player i is a

continuous function of ¿¡i: The following lemma shows that this conjecture is true.

Lemma 4.8 For …xed G; V i(G; ¢) is a continuous function.

Proof . Given A = (®1; ®2; :::); let V i(G; ¿¡i;A(n)) be de…ned as

V i(G; ¿¡i;A(n)) = sup
¿ i
Ei¿ (

nX
m=1

®mZ
i
m):

We will …rst show that for all A; and for all n <1; V i(G; ¿¡i;A(n)) is continuous

in ¿¡i uniformly in G:We prove this by induction. For n = 1; the optimal strategy

for player i is to select the myopic best choice. Thus,

¯̄
V i(G; ¿¡i;A(1))¡ V i(G; ¿̂¡i;A(1))¯̄ = 0 for all G; ¿¡i; ¿̂¡i; A:

Suppose that it is true for all 1 · k · n; and for all A that V i(G; ¿¡i;A(k)) is
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continuous in ¿¡i uniformly in G: Note that

¯̄
V i(G; ¿¡i;A(n+1))¡ V i(G; ¿̂¡i;A(n+1))¯̄

=

¯̄̄̄
¯ _kj=1[®1E(Xi

j;1) +E
¡
V i(G(1);j; ¿¡i;A(n))

¢
]

¡_kj=1 [®1E(X i
j;1) +E

³
V i(Ĝ(1);j; ¿̂¡i;A(n))

´
]

¯̄̄̄
¯

·
¯̄̄̄ _kj=1[®1E(Xi

j;1) +E
¡
V i(G(1);j; ¿¡i;A(n))

¢
]

¡_kj=1 [®1E(X i
j;1) +E

¡
V i(G(1);j; ¿̂¡i;A(n))

¢
]

¯̄̄̄
+

¯̄̄̄
¯ _kj=1[®1E(X i

j;1) +E
¡
V i(G(1);j; ¿̂¡i;A(n))

¢
]

¡_kj=1 [®1E(Xi
j;1) +E

³
V i(Ĝ(1);j; ¿̂¡i;A(n))

´
]

¯̄̄̄
¯ :

The …rst term in the right hand side of the inequality will be arbitrarily

small by induction hypothesis if ¿̂¡i is close enough to ¿¡i. As G(1);j and Ĝ(1);j are

posteriors from the same prior G; we can apply Lemma 4.7, and hence, the last

term will also be arbitrarily small if ¿̂¡i is close enough to ¿¡i:

Now,

¯̄
V i(G; ¿¡i)¡ V i(G; ¿̂¡i)¯̄

· ¯̄
V i(G; ¿¡i)¡ V i(G; ¿¡i;A(n))¯̄
+
¯̄
V i(G; ¿¡i;A(n))¡ V i(G; ¿̂¡i;A(n))¯̄

+
¯̄
V i(G; ¿̂¡i;A(n))¡ V i(G; ¿̂¡i)¯̄ :

As V i(G; ¿¡i;A(n)) ! V i(G; ¿¡i) uniformly in ¿¡i; 9 by choosing n appropriately,

the …rst and the last term can be made less than "=3 for all " > 0. Given that n

and "; by continuity of V i(G; ¢;A(n)); the middle term will be less than "=3 if ¿̂¡i

9 See Theorem 2.5.1 in Berry and Fristedt (1985).
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is close enough to ¿¡i:

4.5 Existence of Pure Markov Strategy
Equilibria

For hm 2 Hm; let Ghm be the posterior belief at the beginning of stage m: A

strategy ¿ = (¿ 1; ¿ 2; :::) 2 T is a Markov strategy if there exists ~¿ : D(Dk) ! ¢

such that ¿m(hm) = ~¿(Ghm) for all hm 2 Hm; and m: Thus, if player i is adopting

a Markov strategy, then his selection will depend only on the posterior at that

stage. As long as the posteriors are the same, regardless of the time he is going to

make a choice and the history before the stage, his selection will be the same. A

Markov strategy ~¿ is a pure Markov strategy if ~¿ maps D(Dk) into vertices of ¢:

In this section, we will provide the main result of this chapter: There exist

pure Markov strategy Equilibria in multi-player multi-armed bandit problems. In

order to invoke the usual …xed point theorem, we will show that the set of pure

Markov strategies is compact subset of the set of strategies. Then, it will be

shown that the best response correspondence restricted on the set of pure Markov

strategies is non-empty, convex, and upper semi-continuous. Recall that, given a

sequence of sets fAkg; lim supAk and lim inf Ak are de…ned as

lim supAk = \1n=1 [1k=n Ak
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and

lim inf Ak = [1n=1 \1k=n Ak:

We say that Ak ! A if lim supAk = lim inf Ak

Lemma 4.9 M is a compact subset of T .

Proof . Since T is a complete metric space, it su¢ces to show that M is

sequentially compact. That is, it su¢ces to show that for every sequence f~¿ng ½

M, there exists a subsequence of f~¿ng that converges in M. Note that a pure

Markov strategy ~¿n 2M can be represented as

~¿n =
kX
j=1

ej1Gnj ;

where the ej are unit vectors in Rk; and the Gnj are the inverse images of ej by ~¿
n:

By de…nition, [Gnj = D(Dk) and Gni \Gnj = ? for i 6= j:

Let

G1 = lim supG
n
1

and select a subsequence f~¿nlgof f~¿ng such that Gnl1 ! G1 as l!1: Given f~¿nlg;

let’s de…ne G2 as

G2 = lim supG
nl
2 ;

and select a subsequence f~¿nlkgof f~¿nlg such that Gnlk2 ! G2 as k ! 1: Repeat

this process until we have subsequence f~¿nqgof f~¿ng such that Gnqj ! Gj ½ D(Dk)
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for every j: It is clear that Gi \Gj = ? for i 6= j: Now let

~¿ =
kX
j=1

ej1Gj :

Then, by construction, ~¿ is a random variable. Since fGjg are disjoint, ~¿ is a

Markov strategy.

In the remainder, we will consider a modi…ed game of the original multi-

player multi-armed bandit problems. In this modi…ed game, the set of strategies

of the players are restricted to M. Payo¤s will be determined as in the original

game. Let B̂i be player i’s best response in the modi…ed game. We could prove

that B̂i is non-empty as in Lemma 4.5. The proof of Lemma 4.5 will go through

without much change. As the strategies are stationary, it is obvious that B̂i(¿¡i)

is convex for every ¿¡i 2 Mn¡1: We already showed that M is compact. What

remains to be shown is the following. Recall that a correspondence ¡ : X ! 2Y

is called upper semicontinuous if fx : ¡(x) ½ Wg is open in X for every open

W ½ Y:

Lemma 4.10 Player i’s best response correspondence B̂i is upper semicontin-

uous.

Proof . By Theorem 7.1.14 in Klein and Thompson (1984), it su¢ces to show

that B̂i is upper hemicontinuous and B̂i(¿¡i) is compact for every ¿¡i 2 Mn¡1:
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We prove upper hemicontinuity …rst. Suppose that

¿¡i;n ! ¿¡i

¿ i;n 2 B̂i(¿¡i;n);

and

¿ i;n ! ¿ i:

We have to show that

¿ i 2 B̂i(¿¡i);

and hence, it su¢ces to show that

V i(G; ¿¡i) = Ei(¿ i;¿¡i)(
1X
m=1

®mZ
i
m):

Since ¿ i;n 2 B̂i(¿¡i;n); we have

V i(G; ¿¡i;n) = Ei(¿ i;n;¿¡i;n)(
1X
m=1

®mZ
i
m):

It is clear thatEi(¿ i;n;¿¡i;n)(
P1

m=1 ®mZ
i
m)! Ei(¿ i;¿¡i)(

P1
m=1 ®mZ

i
m):Also, by Lemma

4.8, V i(G; ¿¡i;n)! V i(G; ¿¡i): Thus, B̂i(¿¡i) is upper hemicontinuous.

For compactness of B̂i(¿¡i); as M is compact, we have only to show that

B̂i(¿¡i) is closed. Suppose that ¿ i;n 2 B̂i(¿¡i) and ¿ i;n ! ¿ i: It is immediate that

¿ i 2 B̂i(¿¡i) since

V i(G; ¿¡i) = Ei(¿ i;n;¿¡i)(
1X
m=1

®mZ
i
m)

! Ei(¿ i;¿¡i)(
1X
m=1

®mZ
i
m):
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Theorem 4.11 There exist pure Markov strategy equilibria in multi-player

multi-armed bandit problems.

Proof . Let

B̂ = ¦ni=1B̂
i :Mn ! (2M)n:

For proof, it su¢ces to show that B̂ has a …xed point. Since the B̂i are non-empty,

and convex, B̂ will also be non-empty, and convex. It is clear that B̂ is also upper

semicontinuous, as B̂i is upper semicontinuous. It is obvious that B̂ is closed. As

Mn is compact and convex, by Theorem 11.4 in Dugundji and Granas (1982), B̂

has a …xed point.
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Chapter 5

Conclusion

In this dissertation, we investigated various situations of strategic experimen-

tation. All these models, however, share one common feature: Players can observe

perfectly others’ actions and payo¤s. We should point out that there is some liter-

ature on strategic experimentation with di¤erent assumptions. Most well known is

the literature on herding. In the study of herd behavior, it is assumed that people

can observe what others are doing, but not their payo¤s. Under this assumption,

players have private information, and they can only infer information about the

respective payo¤s of others from observed actions.

We believe that our world is somewhere in between these two extreme cases.

If so, we will have another dimension of strategic behavior, and a lot of intriguing

questions. How much information should I collect? How much information should
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I release? If I have some control over the quality of the released information, when

should I release truth and when should I release forged information? All of these

questions are waiting to be answered.
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